Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21060162-6    https://doi.org/10.11896/cldb.21060162
  无机非金属及其复合材料 |
粉煤灰地聚物混凝土性能与环境影响的综合评价
梁永宸1,2, 石宵爽1,2,*, 张聪1,2, 张滔1,2, 王晓琪1,2
1 四川大学建筑与环境学院,深地科学与工程教育部重点实验室,成都 610065
2 四川大学建筑与环境学院,破坏力学与工程防灾减灾四川省重点实验室,成都 610065
Comprehensive Evaluation of the Performance and Environmental Impact of Fly Ash Geopolymer Concrete
LIANG Yongchen1,2, SHI Xiaoshuang1,2,*, ZHANG Cong1,2, ZHANG Tao1,2, WANG Xiaoqi1,2
1 MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2 Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 2029KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 目前对粉煤灰地聚物混凝土环境影响评价大多数只考虑环境效益单方面的因素,而力学性能和耐久性能是材料在工程应用中的重要评价指标,材料选取需要同时考虑其力学性能、耐久性能与环境影响。因此,本工作采用生命周期评价(LCA)方法,选取抗压强度、抗硫酸盐侵蚀性能和环境影响为评价指标,设计九组配合比的粉煤灰地聚物混凝土进行环境影响和抗硫酸盐侵蚀的量化分析,利用灰色聚类评价方法建立综合评价模型。结果表明:(1)粉煤灰地聚物混凝土的环境影响主要来自原材料生产阶段,占比高达73%以上;(2)粉煤灰地聚物混凝土的环境效益随碱激发剂用量、粉煤灰用量和硅酸钠与氢氧化钠比值的增大而降低,碱激发剂用量对环境效益影响最大;抗压耐蚀系数越大其抗硫酸盐侵蚀性能越好;(3)在本试验中,配合比1的环境效益最优,配合比5抗硫酸盐侵蚀性能最优,配合比3综合性能最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁永宸
石宵爽
张聪
张滔
王晓琪
关键词:  粉煤灰地聚物混凝土  生命周期评价(LCA)  抗压强度  硫酸盐侵蚀  综合评价    
Abstract: Most of the existing environmental impact assessments of fly ash geopolymer concrete only consider the unilateral factors of environmental benefits, while mechanical properties and durability are important evaluation indicators for materials in engineering applications. Material selection needs to consider its mechanical properties, durability and environmental impact at the same time. In this work, the life cycle evaluation (LCA) method was adopted, and the compressive strength, sulfate resistance and environmental impact were selected as evaluation indicators, and design 9 groups mix of fly ash geopolymer concrete were designed for quantitative analysis of environmental impact and resistance to sulfate erosion. The comprehensive evaluation model is established by grey clustering evaluation method. The results show that: (Ⅰ) the environmental impact of fly ash geopolymer concrete mainly comes from the raw material production stage, accounting for up to 73%. (Ⅱ) The environmental benefits of fly ash geopolymer concrete decrease with the increase of alkali activator dosage, fly ash dosage and the ratio of sodium silicate to sodium hydroxide, and the amount of alkali activator used has the greatest impact on environmental benefits;the larger the compressive corrosion resistance coefficient, the better the sulfate corrosion resistance. (Ⅲ) In the experiment, mix 1 has the best environmental benefit, mix 5 has the best sulfate resistance performance, mix 3 has the best overall performance.
Key words:  fly ash geopolymer concrete    life cycle assessment (LCA)    compressive strength    sulfate resistance    comprehensive performance evaluation
出版日期:  2023-01-25      发布日期:  2023-02-08
ZTFLH:  TU502  
基金资助: 四川省科技厅应用基础研究项目(2020YJ0319)
通讯作者:  *石宵爽,副教授,硕士研究生导师,2011年12月毕业于四川大学建筑与环境学院,获得博士研究生学位。主要从事新型混凝土材料的多尺度研究。在国内外重要期刊发表文章40多篇。   
作者简介:  梁永宸,2015—2019年于福州大学土木工程学院攻读学士学位,2019年9月起至今于四川大学建筑与环境学院攻读硕士学位,主要从事固废物资源化利用研究。
引用本文:    
梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
LIANG Yongchen, SHI Xiaoshuang, ZHANG Cong, ZHANG Tao, WANG Xiaoqi. Comprehensive Evaluation of the Performance and Environmental Impact of Fly Ash Geopolymer Concrete. Materials Reports, 2023, 37(2): 21060162-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060162  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21060162
1 Ng C, Alengaram U J, Wong L S, et al. Construction and Building Materials, 2018, 186, 550.
2 Yuan Y, Zhao R, Li R, et al. Construction and Building Materials, 2020, 250, 118831.
3 Habert G, Espinose J B, Roussel N. Journal of Cleaner Production, 2011, 19(11), 1229.
4 Amran M, Debbarma S, Ozbakkaloglu T. Construction and Building Materials, 2021, 270, 121857.
5 Zhang P, Gao Z, Wang J, et al. Journal of Cleaner Production, 2020, 270, 122389.
6 Noushini A, Castel A, Aldred J, et al. Cement and Concrete Composites, 2020, 105, 103290.
7 Ghafoor M T, Khan Q S, Qazi A U, et al. Construction and Building Materials, 2021, 273, 121752.
8 Kwasny J, Aiken T A, Soutsos M N, et al. Construction and Building Materials, 2018, 166, 537.
9 Manjunath R, Narasimhan M C, Umesha K M. Construction and Building Materials, 2019, 229, 116887.
10 Teh S H, Wiedmann T, Castel A, et al. Journal of Cleaner Production, 2017, 152, 312.
11 中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2002, 中国建筑工业出版社, 2003.
12 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009, 中国建筑工业出版社, 2009.
13 Elyamany H E, Elmoaty A M, Elshaboury A M. Construction and Building Materials, 2018, 184, 111.
14 Tang L, Zhang H E, Huang Q, et al. Advanced Engineering Sciences, 2015, 47(S1), 164(in Chinese).
唐灵, 张红恩, 黄琪, 等. 四川大学学报(工程科学版), 2015, 47(S1), 164.
15 Zhao R D, Yang S Y, Jia W T, et al. Journal of Southwest Jiaotong Unibersity, 2020, 11(1), 1065(in Chinese).
赵人达, 杨世玉, 贾文涛, 等. 西南交通大学学报, 2020, 11(1), 1065.
16 Kawai K, Sugiyama T, Kobayashi K, et al. Journal of Advanced Concrete Technology, 2005, 3(3), 435.
17 Yike Environmental Technology. China Life Cycle Core Database. https://www. weblca. net/home (in Chinese).
亿科环境科技. 中国生命周期核心数据库. https://www. weblca. net/home.
18 Chen C, Habert G, Bouzidi Y, et al. Conservation and Recycling, 2010, 54(12), 1231.
19 Liu S F. Grey system theory and its application, Science Press, China, 2004 (in Chinese).
刘思峰. 灰色系统理论及其应用, 科学出版社, 2004.
20 Geng L S, Dang Y G, Ding S, et al. Control and Decision, 2020, 35(6), 1483(in Chinese).
耿率帅, 党耀国, 丁松, 等. 控制与决策, 2020, 35(6), 1483.
[1] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[2] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[3] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[4] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[5] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[6] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[7] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[8] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[9] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[10] 陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
[11] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[12] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[13] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[14] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[15] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
ght=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\">"); }