Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 22030196-5    https://doi.org/10.11896/cldb.22030196
  高分子与聚合物基复合材料 |
氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究
樊晋源1, 李茂森1, 段平1,*, 陈伟2, 张祖华3
1 中国地质大学(武汉)材料与化学学院,武汉 430074
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
3 同济大学材料科学与工程学院先进土木工程材料教育部重点实验室,上海 201804
Sulfate Attack Resistance of Graphene Oxide Reinforced Geopolymer
FAN Jinyuan1, LI Maosen1, DUAN Ping1,*, CHEN Wei2, ZHANG Zuhua3
1 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
3 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 7885KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究氧化石墨烯对地聚物耐久性的影响,以偏高岭土(MK)、氧化石墨烯(GO)为原料,通过碱激发方式制备地聚物。采用抗压强度测试、扫描电子显微镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)等综合分析经硫酸盐溶液侵蚀后GO增强地聚物的力学性能及微观结构以评价其耐久性能。结果表明:GO的掺入可提高地聚物的抗压强度。当GO掺入量为0.1%(质量分数)时,GO增强地聚物的抗压强度最高,硫酸盐侵蚀7 d后达到73.07 MPa。GO的掺入可增加地聚物致密性,有效减少有害物质侵入,提高地聚物的早期抗硫酸盐侵蚀性能,侵蚀7~14 d抗压强度仅减少5.5%;GO加快地聚合反应及水化速率,促进地聚物凝胶中钠长石和钠沸石等成核结晶生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊晋源
李茂森
段平
陈伟
张祖华
关键词:  地聚物  偏高岭土(MK)  氧化石墨烯(GO)  硫酸盐侵蚀  微观结构    
Abstract: This work aims to investigate the effect of graphene oxide (GO) on the sulfate attack of geopolymers. Geopolymers were prepared from metakaolin (MK) and graphene oxide (GO) by alkali activation. Mechanical property and microstructure of the GO-reinforced geopolymers after sulfate attack were analyzed by using compressive strength test, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and infrared spectroscopy analysis (FTIR) to evaluate its durability. The results show that GO improves compressive strength. The sample with 0.1wt% of GO exhibits the highest compressive strength, which reaches 73.07 MPa at 7 d of sulfate exposure. GO increases the compactness of geopolymers, effectively reduces the ingress of harmful substances, and improves early-age sulfate attack resistance. The compressive strength of the sample with 7—14 d of sulfate exposure decreases by only 5.5%. GO accelerates geopolymerization process and hydration rate, and promotes nucleation crystallization of albite and flusston in geopolymer gel.
Key words:  geopolymer    metakaolin (MK)    graphene oxide (GO)    sulfate attack    microstructure
发布日期:  2023-07-10
ZTFLH:  TB332  
基金资助: 湖北省重点研发计划(2020BAB065);江西省重点研发计划(20201BBG71011)
通讯作者:  *段平,中国地质大学(武汉)材料与化学学院副教授、硕士研究生导师。2014年武汉理工大学材料科学与工程专业博士毕业后到中国地质大学(武汉)工作至今。目前主要研究领域为:(1)纳米矿物材料结构及性能调控;(2)化学激发胶凝材料;(3)固体废弃物资源化与综合利用;(4)先进水泥基材料及耐久性。发表SCI论文50余篇,包括Materials and Design、Applied Clay Science、Construction and Building Materials、Cement and Concrete Composites、Ceramics International、Materials Letters等,引用次数超1 000次。申报国家发明专利14项。duanping@cug.edu.cn   
作者简介:  樊晋源,2021年6月于湖北工业大学获得工学学士学位。现为中国地质大学(武汉)材料与化学学院硕士研究生,在段平教授的指导下进行研究。目前主要研究领域为矿物材料综合利用。
引用本文:    
樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
FAN Jinyuan, LI Maosen, DUAN Ping, CHEN Wei, ZHANG Zuhua. Sulfate Attack Resistance of Graphene Oxide Reinforced Geopolymer. Materials Reports, 2023, 37(13): 22030196-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030196  或          http://www.mater-rep.com/CN/Y2023/V37/I13/22030196
1 Yang S Y, Zhao R D, Zeng X S, et al. Materials Reports, 2021, 35(7), 7107 (in Chinese).
杨世玉, 赵人达, 曾宪帅, 等. 材料导报, 2021, 35(7), 7107.
2 Cao R, Zhang S, Banthia N, et al. Composites Part B:Engineering, 2020, 186, 107840.
3 Longhi M A, Rodríguez E D, Walkley B, et al. Composites Part B:Engineering, 2020, 182, 107671.
4 Mobili A, Belli A, Giosuè C, et al. Cement and Concrete Research, 2016, 88, 198.
5 Zeze A L P, Xu H Y, Zhang M, et al. Materials Reports, 2021, 35(Z1), 600 (in Chinese).
Zeze A L P, 徐红岩, 张默, 等. 材料导报, 2021, 35(Z1), 600.
6 Zhou A A, Bai J, Hong W, et al. Carbon, 2022, 191, 301.
7 Krishna R S, Mishra J, Nanda B, et al. Construction and Building Materials, 2021, 306, 124774.
8 Dong J M, Zou M X, Zhou M, et al. Materials Reports, 2022, 36(24), 21060032-1 (in Chinese).
董健苗, 邹明璇, 周铭, 等. 材料导报, 2022, 36(24), 21060032-1.
9 Li M, Luo R, Qin L, et al. Cement and Concrete Composites, 2022, 125, 104318.
10 Liu X, Wu Y, Li M, et al. Construction and Building Materials, 2020, 247, 118544.
11 Wang Q, Li S, Pan S, et al. Construction and Building Materials, 2019, 198, 106.
12 Nguyen H D, Zhang Q, Sagoe-Crentsil K, et al. Cement and Concrete Composites, 2021, 124, 104279.
13 Chen Y, Li X, Dong B, et al. Construction and Building Materials, 2022, 320, 126286.
14 Muthu M, Yang E H. Cement and Concrete Composites, 2021, 124, 104252.
15 Ling K, Lu D Y, Xu J T, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 224 (in Chinese).
凌康, 卢都友, 徐江涛, 等. 硅酸盐学报, 2018, 46(2), 224.
16 Guo L, Wu Y, Xu F, et al. Composites Part B:Engineering, 2020, 183, 107689.
17 Zhang Z, Zhu Y, Zhu H, et al. Cement and Concrete Composites, 2019, 96, 194.
18 Zhao L, Zhu S, Wu H, et al. Construction and Building Materials, 2020, 247, 118446.
19 Yan S, He P, Jia D, et al. Ceramics International, 2016, 42(16), 18181.
20 Chiranjiakumari D S, Ahmad K R. Construction and Building Materials, 2020, 250, 118883.
21 Vasudevareddy P, Chandrasekhar R K. Materials Today:Proceedings, DOI:10. 1016/j. matpr. 2022. 01. 234.
22 Liang G, Zhu H, Zhang Z, et al. Journal of Cleaner Production, 2019, 230, 603.
23 Yang T, Zhu H, Zhang Z. Construction and Building Materials, 2017, 153, 284.
24 Guo X, Shi H, Dick W A. Cement and Concrete Composites, 2010, 32(2), 142.
25 Ranjbar N, Mehrali M, Mehrali M, et al. Cement and Concrete Research, 2015, 76, 222.
26 Guo X, Xiong G. Construction and Building Materials, 2021, 269, 121326.
27 Qureshi T S, Panesar D K. Construction and Building Materials, 2019, 206, 71.
28 Liu X, Jiang J, Zhang H, et al. Applied Clay Science, 2020, 196, 105769.
29 Saafi M, Tang L, Fung J, et al. Cement and Concrete Research, 2015, 67, 292.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[4] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[5] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[6] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[7] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[8] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[9] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[10] 龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
[11] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[12] 卢喆, 姚文娟, 王社良, 王善伟, 刘博. 复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J]. 材料导报, 2023, 37(12): 22010153-9.
[13] 朱慧慧, 徐允良, 胡朝帅, 褚宏宇, 朱亚明, 程俊霞, 赵雪飞. 芳香类重质油基针状焦的制备及表征[J]. 材料导报, 2023, 37(11): 21070270-5.
[14] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[15] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed