Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21120199-6    https://doi.org/10.11896/cldb.21120199
  无机非金属及其复合材料 |
加速锰铁氧系氨氮亚硝化催化剂活化的研究
许效锐1, 莫恒亮2,*, 唐阳1, 刘曼曼2, 侯婉伊1, 李锁定2, 赵文芳2, 杨恒宇2, 万平玉1,*
1 北京化工大学化学学院,国家新危险化学品评估及事故鉴定基础研究实验室,北京 100029
2 北京碧水源膜科技有限公司,北京 101400
Study on Accelerating the Activation of Ferromanganese Ammonia-Nitrogen Nitrosation Catalyst
XU Xiaorui1, MO Hengliang2,*, TANG Yang1, LIU Manman2, HOU Wanyi1, LI Suoding2, ZHAO Wenfang2, YANG Hengyu2, WAN Pingyu1,*
1 National Basic Research Laboratory of New Hazardous Chemicals Assessment and Accident Identification, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
2 Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101400, China
下载:  全 文 ( PDF ) ( 11974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以锰盐、铁盐和微量元素为原料制备了经历150 h活化期后可利用水中溶解氧将NH4+氧化为NO2-的锰铁氧系催化剂,对其活化前后的微观变化进行分析表征,结果表明,催化剂活化前后的形貌无明显变化,但其活化后的Zeta电位明显变负,更有利于带正电的NH4+吸附在其表面。分析了催化剂的物相组成,结果表明,该催化剂是由δ-MnO2和Fe2O3等组成的锰铁复合氧化物,活化后催化剂的δ-MnO2物相峰和Fe2O3物相峰强度均增大。此外,活化后的铵催化剂中Mn(Ⅱ)减少而Mn(Ⅳ)增加,FeOOH减少而Fe2O3增加,碳酸氧减少而吸附氧增加。鉴于活化过程所发生的上述物种及微观变化,探索了缩短该催化剂活化时间的方式,采用NaClO溶液浸泡未活化的催化剂加快Mn(Ⅱ) 向Mn(Ⅳ) 转变,可将活化时间由150 h缩短为85 h;采用加热脱水法促进FeOOH向Fe2O3的转化,可将活化时间由150 h缩短为100 h。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许效锐
莫恒亮
唐阳
刘曼曼
侯婉伊
李锁定
赵文芳
杨恒宇
万平玉
关键词:  亚硝化催化剂  催化氧化  活化过程  微观结构    
Abstract: Using manganese salt, iron salt and trace elements as raw materials, a ferromanganese catalyst which can oxidize NH4+ to NO2- by using dissolved oxygen in water after 150 h activation period was prepared. The analysis and characterization results of the micro-properties changes of the catalysts before and after activation showed that the morphology of the catalysts did not change significantly, but the Zeta potential of the catalysts after activation became significantly negative, which was more favorable for positively charged NH4+ to adsorb on its surface. The phase composition was analyzed. The results showed that the catalyst is a manganese-iron composite oxide composed of δ-MnO2 and Fe2O3, and the phase peaks of δ-MnO2 and Fe2O3 increase after activation. In addition, in the activated ammonium catalyst, Mn(Ⅱ) decreased and Mn(Ⅳ) increased, FeOOH decreased and Fe2O3 increased, oxygen carbonate decreased and adsorbed oxygen increased. In view of the changes of species and microscopic properties in the activation process, the unactivated catalyst was soaked in NaClO solution to accelerate the transformation of Mn(Ⅱ) to Mn(Ⅳ), which could shorten the activation time from 150 h to 85 h. The activation time can be shortened from 150 h to 100 h by promoting the conversion of FeOOH to Fe2O3 by heating dehydration.
Key words:  nitrosation catalyst    catalytic oxidation    activation process    microstructure
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TB34  
基金资助: 国家自然科学基金(22075012;21506010)
通讯作者:  *莫恒亮,博士,高级工程师。2010年6月、2016年6月于北京化工大学获得理学学士学位和理学博士学位。现为北京碧水源膜科技有限公司研发中心水处理功能材料研究所所长。目前主要研究领域为水处理功能材料、膜分离材料、电化学水处理技术。
万平玉,北京化工大学化学学院教授、博士研究生导师。1982年大连理工大学化学系本科毕业,1986年华中科技大学化学系硕士毕业后到北京化工大学工作至今,2002—2003年在澳大利亚新南威尔大学作高级访问学者。目前主要从事与电化学技术研究和应用相关的科研及教学工作。发表论文80余篇,包括J.Am.Chem.Soc.、Angew.Chem.Int.Ed.Chem Sus Chem.、Electrochem.Commun.Green Chem.等。bsy_mohengliang@126.com;pywan@mail.buct.edu.cn   
作者简介:  许效锐,2019年6月于山东理工大学获得工学学士学位。现为北京化工大学化学学院硕士研究生,在万平玉教授和唐阳副教授以及莫恒亮高级工程师的指导下进行研究。目前主要研究领域为水处理催化剂的性能及机理。
引用本文:    
许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
XU Xiaorui, MO Hengliang, TANG Yang, LIU Manman, HOU Wanyi, LI Suoding, ZHAO Wenfang, YANG Hengyu, WAN Pingyu. Study on Accelerating the Activation of Ferromanganese Ammonia-Nitrogen Nitrosation Catalyst. Materials Reports, 2023, 37(10): 21120199-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120199  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21120199
1 Pejman Ahmadiannamini, Satchithanandam Eswaranandam, Ranil Wickramasinghe, et al. Journal of Membrane Science, 2017, 526, 147.
2 Huang J, Nadeeka R K, Christopher C, et al. Journal of Environmental Sciences, 2018, 63(1), 174.
3 Zhang L, Wang J, Qiao H, et al. Journal of Cleaner Production, 2020, 272(2), 123055.
4 Mo H L, Chen Y L, Wen J P, et al. China Environmental Science, 2020, 40(12), 5325 (in Chinese).
莫恒亮, 陈亦力, 文剑平, 等. 中国环境科学, 2020, 40(12), 5325.
5 Ji B X, Zhang H N, Zhou L, et al. Bioresource Technology, 2021, 337, 125363.
6 Geng J, Feng F, Kong D, et al. Materials Reports, 2013, 27(2), 116 (in Chinese).
耿佳, 冯芳, 孔丹, 等. 材料导报, 2013, 27(2), 116.
7 Wu H X, Fan J W, Sun Y J, et al. Journal of Environmental Management, 2021, 299, 113590.
8 Jiang Guangming, Peng Min, Lyu Xiaoshu, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021, 38(3), 1(in Chinese).
蒋光明, 彭敏, 吕晓书, 等. 重庆工商大学学报(自然科学版), 2021, 38(3), 1.
9 Cheng Y, Xiong W Y, Huang T L. Science of the Total Environment, 2020, 737, 139525.
10 Guo Y M, Huang T L, Wen G, et al. Chemical Engineering Journal, 2017, 308, 322.
11 Cheng Y, Huang T L, Sun Y K, et al. Chemical Engineering Journal, 2017, 322, 82
12 Bai X L, Huang T L, Zhang R F, et al. China Environmental Science, 2017, 37(12), 4534 (in Chinese).
白筱莉, 黄廷林, 张瑞峰, 等. 中国环境科学, 2017, 37(12), 4534.
13 Jian J, Xiao L L, Cheng C, et al. Applied Catalysis B:Environmental, 2020, 260(C), 118210.
14 Shao Y Z, Huang T L, Shi X X, et al. Journal of Environmental Sciences, 2016, 36(6), 2067 (in Chinese).
邵跃宗, 黄廷林, 史昕欣, 等. 环境科学学报, 2016, 36(6), 2067.
15 Narjès Harrouch Batis, Pierre Delichere, Habib Batis. Applied Catalysis A-General, 2005, 282(1), 173.
16 Chen Y, Huang T L, Cheng L J, et al. Journal of Environmental Sciences, 2018, 72, 89.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[3] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[4] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[5] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[6] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[7] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[8] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[9] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[10] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[11] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[12] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[13] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[14] 徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
[15] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed