Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21070096-6    https://doi.org/10.11896/cldb.21070096
  高分子与聚合物基复合材料 |
接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究
徐璐1, 王华伟2, 陈伟峰2, 王宁2, 曾超2, 刘伯军1, 张明耀1,*
1 长春工业大学材料科学与工程学院,长春 130012
2 天津大沽化工股份有限公司技术中心,天津 300455
Composition and Structure Design of Graft Modifier SBR-g-MS and Performance Exploration of Transparent ABS Resin
XU Lu1, WANG Huawei2, CHEN Weifeng2, WANG Ning2, ZENG Chao2, LIU Baijun1, ZHANG Mingyao1,*
1 School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
2 Technical Center Tianjin Dagu Chemical Industry Co., Ltd., Tianjin 300455, China
下载:  全 文 ( PDF ) ( 5382KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用乳液聚合技术制备粒径为80 nm的丁苯胶乳(SBR),以醋酸为附聚剂,将SBR附聚至300 nm左右,采用种子乳液聚合技术在SBR乳胶粒子上先后接枝共聚苯乙烯(St)和甲基丙烯酸甲酯(MMA),合成SBR质量分数为60%的SBR-g-MS接枝共聚物。将其与聚甲基丙烯酸甲酯(PMMA)和苯乙烯-丙烯腈共聚物(SAN)熔融共混制备透明丙烯腈/丁二烯/苯乙烯(ABS)树脂,研究了SBR-g-MS接枝共聚物组成结构与PMMA/SAN共混比例对透明ABS树脂性能的影响。结果表明,将基体树脂折光指数与SBR乳胶粒子折光指数匹配可以获得透光性能优良的ABS树脂;当SBR中丁二烯(Bd)与苯乙烯的比例为70/30(质量比,下同)时,其和PMMA与SAN的比例为44/56的基体树脂共混后所得ABS树脂具有最佳透光效果;Bd与St的比例为75/25、PMMA与SAN的比例为48/52时,Bd与St的比例为80/20时、PMMA与SAN的比例为53/47时,透明ABS树脂透光效果最佳;透光率均在85%以上;SBR-g-MS接枝共聚物中接枝共聚单体St含量过高会显著降低ABS树脂光学性能,接枝共聚单体St与MMA比例为25/75时,ABS树脂光学性能最佳,透光率86.46%;SBR-g-MS接枝共聚物与基体树脂共混比例增加,ABS树脂的冲击强度呈上升趋势,透光率在SBR含量大于15%(质量分数)时骤然下降.胶含量在15%时透明ABS树脂的冲击强度为158.7 J/m,透光率86.46%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐璐
王华伟
陈伟峰
王宁
曾超
刘伯军
张明耀
关键词:  透明ABS树脂  乳液聚合  丁苯胶乳  SBR-g-MS接枝共聚物  微观结构    
Abstract: Styrene-butadiene latex (SBR) with a particle size of 80 nm was prepared by emulsion polymerization, and acetic acid was used as agglomerating agent to agglomerate SBR to about 300 nm. The SBR-g-MS graft copolymer with 60% SBR was synthesized by grafting styrene (St) and methyl methacrylate (MMA) by seed emulsion polymerization. It was melt blended with polymethyl methacrylate (PMMA) and styrene-acrylonitrile copolymer (SAN) to prepare the transparent ABS resin. The effects of the composition and structure of the SBR-g-MS graft copolymer and the blending ratio of PMMA/SAN on the properties of the transparent ABS resin were studied. The results showed that matching the refractive index of the matrix resin and the SBR latex particles can help to obtain the ABS resin with excellent transmittance. When the mass ratio of butadiene (Bd) to styrene in SBR was 70/30, the ABS resin with m(PMMA)/m(SAN) was 44/56 had the best transmittance; when m(Bd)/m(St) was 75/25, m(PMMA)/m(SAN) was 48/52, m(Bd)/m(St) was 80/20, m(PMMA)/m(SAN) was 53/47, the ABS resin has the best transmittance, the transmittance was above 85%. Furthermore, when the ratio of grafting comonomer St to MMA was 25/75, the optical performance of ABS resin was the best and the transmittance was 86.46%. As the blending ratio of SBR-g-MS graft copolymer and matrix resin increased, the impact strength of ABS resin increased, and the transmittance dropped suddenly when the rubber content was more than 15%. When the rubber content was 15%, the impact strength of the transparent ABS resin was 158.7 J/m, and the transmittance was 86.46%.
Key words:  transparent ABS resin    emulsion polymerization    styrene-butadiene latex    SBR-g-MS graft copolymer    morphological structure
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TQ322  
基金资助: 国家自然科学基金(51903017);吉林省教育厅科学技术研究项目(JJKH20210759KJ)
通讯作者:  * zmy@mail.ccut.edu.cn   
作者简介:  徐璐,2020年6月毕业于长春工业大学,获得理学硕士学位。2020年6在长春工业大学材料科学与工程专业攻读博士学位,主要从事ABS树脂结构设计及性能方面的研究。
张明耀,二级教授,博士研究生导师,现为长春工业大学校长,吉林省科协副主席,国务院津贴获得者,吉林省长白山学者特聘教授。本硕毕业于长春工业大学,博士毕业于东北大学,1994年9月到长春工业大学工作至今,主要从事乳液聚合技术、ABS树脂改性、碳纤维制备研究工作。在国内外重要期刊发表文章60余篇,获得中国石油化工协会科技进步一等奖1项。
引用本文:    
徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
XU Lu, WANG Huawei, CHEN Weifeng, WANG Ning, ZENG Chao, LIU Baijun, ZHANG Mingyao. Composition and Structure Design of Graft Modifier SBR-g-MS and Performance Exploration of Transparent ABS Resin. Materials Reports, 2022, 36(21): 21070096-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070096  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21070096
1 Clemente M J, Lavieja C, Peña J I, et al. Polymer Engineering & Science, 2018, 58(9), 1604.
2 Wang K, Li T, Xie S, et al. Polymers, 2019, 11(9), 1493.
3 Chaudry U M, Hamad K. Polymer Engineering & Science, 2019, 59(11), 2273.
4 Sato Y, Sobu S, Nakabayashi K, et al. ACS Applied Polymer Materials, 2020, 2(8), 3205.
5 Abbasi F, Agah A M, Mehravar E. Journal of Applied Polymer Science, 2011,119(3), 1752.
6 Kim Y J, Shin G S, Lee I T, et al. Journal of Applied Polymer Science, 2003, 47(2), 295.
7 Ren L, Zhang M Y, Wang Y R, et al. Journal of Applied Polymer Science, 2012, 123(1), 292.
8 Chen D, Zhu F P, Zhou T T, et al. Journal of Polymer Engineering, 2016, 36(3), 321.
9 Zhang D L, Luan M Y, Lin Q, et al. Acta Polymerica Sinica, 2006, 1(2), 356 (in Chinese).
张大雷, 栾明玥, 林权, 等.高分子学报, 2006, 1(2), 356.
10 Yu Y, Lyu J, Li G, et al. China Plastics, 2009(4), 20 (in Chinese).
于越, 吕洁, 李刚, 等.中国塑料, 2009(4), 20.
11 Guo L C, Ren L, Li M Y, et al. China Plastics, 2012(1), 18 (in Chinese).
郭立春, 任亮, 李明远, 等.中国塑料, 2012(1), 18.
12 Wang J, Zhang X, Jiang L,et al. Progress in Polymer Science, 2019, 98, 101160.
13 Xu L, Liu B J, Zhang M Y, et al. Polymer Engineering & Science, 2020, 60, 1194.
14 Wang M L, Liu X L, Li Z Y, et al. Materials Reports, 2018, 32(Z1), 454 (in Chinese).
王美琳, 刘晓丽, 李志英, 等. 材料导报, 2018, 32(Z1), 454.
15 Huang D, Liu Z G, Ren L, et al. Polymeric Materials Science and Engineering, 2010(5), 50 (in Chinese).
黄丹, 刘振国, 任亮, 等.高分子材料科学与工程, 2010(5), 50.
16 Han Y, Lach R, Grellmann W. Journal of Applied Polymer Science, 2001, 79(1), 9.
[1] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[2] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[3] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[4] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[5] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[6] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[7] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[8] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[9] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[10] 张向东, 蔡习军, 蔡飞, 张世宏, 陈利. 钛合金表面不同多层结构Cr/CrAlN涂层的制备及磨损性能[J]. 材料导报, 2022, 36(15): 21020062-6.
[11] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[12] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[13] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[14] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[15] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed