Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 20090171-9    https://doi.org/10.11896/cldb.20090171
  高分子与聚合物基复合材料 |
钯催化乙炔半加氢反应的研究进展
刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军*
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Progress in Palladium Catalysts for Acetylene Semi-Hydrogenation
LIU Xin, HUANG Liang, ZHU Qing, LI Xiaojian, GUO Junyan, ZHANG Haijun*
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 3248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在石油裂解生产得到的乙烯中存在的少量乙炔会毒化乙烯聚合反应中的催化剂,进而劣化聚合物的品质。选择性催化半加氢法可有效除去富乙烯流中的少量乙炔,钯因其优异的氢气解离性能及碳碳三键亲和性能被公认为是乙炔半加氢反应中催化效率最高且最具前景的催化剂。但是,纯钯催化剂对乙烯的选择性较差,容易过度加氢生成乙烷。因此,必须对钯催化剂进行改性和优化。常见的改性方法包括调节钯催化剂的微观结构与分散度、与其他金属形成合金、引入助催化剂及选择合适的载体等。本文综述了不同钯催化剂在乙炔半加氢领域的最新研究进展,总结了各改性方法对钯催化性能的影响,并对其今后的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鑫
黄亮
竺清
李孝建
郭俊艳
张海军
关键词:  钯催化剂  乙炔半加氢  微观结构  助催化剂  载体    
Abstract: The existence of trace acetylene in ethylene produced by naphtha cracking could poison the catalyst of ethylene polymerization, resulting in the deterioration of polymer quality. Selective catalytic semi-hydrogenation can effectively remove trace acetylene from ethylene rich flow, and palladium with excellent hydrogen dissociation and carbon-carbon triple bond affinity is recognized as the most efficient and promising catalyst for acetylene semi hydrogenation. The flaw of palladium is its high proneness to transform ethylene to ethane due to its poor selectivity for the former. Hence considerable academic and engineering efforts have been made, on the basis of a lot of modification methods, including adjusting the microstructure and dispersion of palladium catalysts, forming alloys with other metals, introducing catalyst promoters and optimizing supports. In this paper, the latest research progress of different palladium catalysts in semi-hydrogenation of acetylene is reviewed. The effects of the above-mentioned modification methods on the catalytic performance of palladium are summarized, and the future research directions are also prospected.
Key words:  palladium catalyst    acetylene semi-hydrogenation    microstructure    catalyst promoter    supports
发布日期:  2022-10-26
ZTFLH:  O643  
基金资助: 国家自然科学基金 (52072274)
通讯作者:  *zhanghaijun@wust.edu.cn   
作者简介:  刘鑫,2019年毕业于河南理工大学,获得工学学士学位。现于武汉科技大学省部共建耐火材料与冶金国家重点实验室攻读硕士学位。主要研究方向为纳米催化剂和基于第一性原理的材料模拟计算。
张海军,1999年获得北京科技大学博士学位。目前任武汉科技大学省部共建耐火材料与冶金国家重点实验室教授、博士研究生导师。其研究方向主要集中在金属纳米颗粒、催化制氢、高温陶瓷及非氧化物耐火材料等领域。在国内外刊物上发表学术论文420余篇,包括Nature MaterialsAdvanced MaterialsAngewandte Chemie International Edition,其中被SCI检索210余篇,被EI检索260余篇,并被SCI引用3 800多次。
引用本文:    
刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
LIU Xin, HUANG Liang, ZHU Qing, LI Xiaojian, GUO Junyan, ZHANG Haijun. Progress in Palladium Catalysts for Acetylene Semi-Hydrogenation. Materials Reports, 2022, 36(20): 20090171-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090171  或          http://www.mater-rep.com/CN/Y2022/V36/I20/20090171
1 Gonçalves L P L, Wang J, Vinati S, et al. International Journal of Hydrogen Energy, 2020, 45(2), 1283.
2 Song Y, Laursen S. Journal of Catalysis, 2019, 372, 151.
3 Zhang R G, Zhang J, Jiang Z, et al. Chemical Engineering Journal, 2018, 351, 732.
4 Zhang R, Zhao B, He L, et al. Physical Chemistry Chemical Physics, 2018, 20(25), 17487.
5 Wei S J, Li A, Liu J C, et al. Nature Nanotechnology, 2018, 13(9), 856.
6 Xu L, Stangland E E, Mavrikakis M. Journal of Catalysis, 2018, 362, 18.
7 Liu S, Niu Y, Wang Y, et al. Chemical Communications, 2020, 56, 6372.
8 Palgunadi J, Kim H S, Lee J M, et al. Chemical Engineering and Processing, 2010, 49(2), 192.
9 Li K, Lyu T T, He J Y, et al. Frontiers of Chemical Science and Engineering, 2020, 14(6), 929.
10 Yusa H, Kikuchi M, Tsuchiya H, et al. Nuclear Engineering and Design, 1977, 41(3), 437.
11 Yang L N, Guo Y S, Long J, et al. Chemical Communications, 2019, 55(97), 14693.
12 Lu Y, Feng X, Takale B S, et al. ACS Catalysis, 2017, 7(12), 8296.
13 Zhou S Z, 35 L H, Xu Z, et al. RSC Advances, 2020, 10(4), 1937.
14 Jovovi J, Majstorovi G L. Contributions to Plasma Physics, 2019, 59(7), 201800147.
15 Vignola E, Steinmann S N, Farra A A, et al. ACS Catalysis, 2018, 8(3), 1662.
16 Polanyi M, Szabo A L. Transactions of the Faraday Society, 1934, 30, 508.
17 Gong W B, Yuan Q L, Chen C, et al. Advanced Materials, 2019, 31(49), 1906051.
18 Rao D M, Sun T, Yang Y S, et al. Physical Chemistry Chemical Physics, 2019, 21(3), 1384.
19 Feng Q, Zhao S, Wang Y, et al. Journal of the American Chemical Society, 2017, 139(21), 7294.
20 Zhou S Q, Shang L, Zhao Y X, et al. Advanced Materials, 2019, 31(18), 1900509.
21 Kitchin J R, Norskov J K, Barteau M A, et al. Physical Review Letters, 2004, 93(15), 156801.
22 Li X T, Chen L, Wei G F, et al. ACS Catalysis, 2020, 10(17), 9694.
23 Matselko O, Zimmermann R R, Ormeci A, et al. Journal of Physical Chemistry C, 2018, 122(38), 21891.
24 Teschner D, Borsodi J, Wootsch A, et al. Science, 2008, 320(5872), 86.
25 Chen L Y, Gao Z Q, Li Y W. Catalysis Today, 2015, 245, 122.
26 Repo T, Klinga M, Pietikäinen P, et al. Macromolecules, 1997, 30(2), 171.
27 Zhang M H, Wu X Y, Huang X W, et al. Computational and Theoretical Chemistry, 2017, 1115, 253.
28 Guo Z L, Huang Q S, Luo S Z, et al. Topics in Catalysis, 2017, 60(12-14), 1.
29 Chung J Y, Kodama S, Sekiguchi H. Nanomaterials, 2019, 9(12), 1734.
30 Yarulin A E, Crespoquesada R M, Egorova E V, et al. Kinetics and Catalysis, 2012, 53(2), 253.
31 Kim S, Kim C, Lee J H, et al. Journal of Catalysis, 2013, 306(1), 146.
32 Pei G X, Liu X Y, Yang X F, et al. ACS Catalysis, 2017, 7(2), 1491.
33 Ma R, He Y F, Feng J T, et al. Journal of Catalysis, 2019, 369, 440.
34 Ding L B, Yi H, Zhang W H, et al. ACS Catalysis, 2016, 6(6), 3700.
35 Kang J H, Shin E W, Kim W J, et al. Catalysis Today, 2000, 63(2), 183.
36 Kim E, Shin E W, Bark C W, et al. Applied Catalysis A, 2014, 471(5), 80.
37 Hu M C, Wang X Q. Catalysis Today, 2016, 263, 98.
38 McCue A J, Guerrero-Ruiz A, Ramirez-Barria C, et al. Journal of Catalysis, 2017, 355, 40.
39 Cai W M, Zhang S, Lyu J, et al. ACS Catalysis, 2017, 7(6), 4083.
40 He Y F, Fan J X, Feng J T, et al. Journal of Catalysis, 2015, 331, 118.
41 Feng Q C, Zhao S, Xu Q, et al. Advanced Materials, 2019, 31(36), 1901024.
42 Wang S, Zhao Z J, Chang X, et al. Angewandte Chemie International Edition, 2019, 58(23), 7668.
43 Collins G, Schmidt M, Odwyer C, et al. Angewandte Chemie Internatio-nal Edition, 2014, 53(16), 4142.
44 Glyzdova D V, Afonasenko T N, Khramov E V, et al. Applied Catalysis A, 2020, 600, 117627.
45 Pei G X, Liu X Y, Wang A Q, et al. ACS Catalysis, 2015, 5(6), 3717.
46 Pei G X, Liu X Y, Wang A Q, et al. New Journal of Chemistry, 2014, 38(5), 2043.
47 Afonasenkoa T N, Temereva V L, Shlyapina D A, et al. Russian Journal of Applied Chemistry, 2019, 92(1), 110.
48 Huang X H, Xia Y J, Cao Y J, et al. Journal of Nanoparticle Research, 2017, 10(4), 1302.
49 Guan Q, Yang C, Wang S, et al. ACS Catalysis, 2019, 9(12), 11146.
50 You D J, Kim D H, De Lile J R, et al. Applied Catalysis A, 2018, 562, 250.
51 Hiroshi I, Ryotaro S, Taiki K, et al. Catalysts, 2015, 5(3), 1375.
52 Lu X Y, Zheng L, Zhang M S, et al. Electrochimica Acta, 2017, 238, 194.
53 Wallentin J, Jacobsson D, Osterhoff M, et al. ACS Catalysis, 2017, 17(7), 4143.
54 Wu P, Tan S, Moon J, et al. Nature Communications, 2020, 11(1), 3042.
55 Ahn I Y, Kim W J, Sang H M. Applied Catalysis A, 2006, 308, 75.
56 McKenna F M, Anderson J A. Journal of Catalysis, 2011, 281(2), 231.
57 Cecilia J A, Infantes-Molina A, Rodríguez-Castellón E, et al. Journal of Catalysis, 2009, 263(1), 4.
58 Cecilia J A, Infantes-Molina A, Rodríguez-Castellón E, et al. Applied Catalysis B, 2009, 92(1), 100.
59 Alvarado R L, Mormul J, Lejkowski M, et al. ACS Catalysis, 2017, 7(5), 3584.
60 Liu Y, McCue A J, Miao C, et al. Journal of Catalysis, 2018, 364, 406.
61 Wang K J, Chen Y Y, Li X S, et al. Catalysis Letters, 2008, 127(3-4), 392.
62 Kuwahara Y, Kango H, Yamashita H. ACS Catalysis, 2019, 9(3), 1993.
63 Khouya A A, Ba H, Baaziz W, et al. ACS Applied Nano Materials, 2021, 4(2), 2265.
64 Guan Z, Xue M F, Li Z Q, et al. Applied Surface Science, 2020, 503, 144142.
65 Xia S J, Fang L, Zhang X Q, et al. Applied Catalysis B, 2020, 272, 118949.
66 Liu P, Chang W T, Wu M Y, et al. Reaction Kinetics Mechanisms and Catalysis, 2015, 116(2), 409.
67 Wang J, Kuang Q, Su X, et al. ACS Applied Nano Materials, 2020, 4(1), 861.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[4] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[5] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[6] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[7] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[8] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[9] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[10] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[11] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[12] 刘欢, 秦凌浩. 血小板囊泡作为药物递送载体的研究综述[J]. 材料导报, 2022, 36(19): 21010078-8.
[13] 贾斐, 杜传超, 毛天立, 刘宇, 刘晓光. 纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展[J]. 材料导报, 2022, 36(17): 20080171-9.
[14] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[15] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed