Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20120112-6    https://doi.org/10.11896/cldb.20120112
  金属与金属基复合材料 |
Al2O3/FeCrNi复合蜂窝载体材料的制备及性能
郭建新, 周芸*, 汪天尧, 闫敬明, 郭路, 左孝青
昆明理工大学材料科学与工程学院,昆明 650093
Preparation and Property of Al2O3/FeCrNi Composite Honeycomb Carrier Materials
GUO Jianxin, ZHOU Yun*, WAMG Tianyao, YAN Jingming, GUO Lu, ZUO Xiaoqing
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 3324KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为制备性能优良的Al2O3/FeCrNi复合蜂窝载体材料,通过混料-炼料-挤压成型法,以FeCrNi合金粉末、Fe2O3粉末、Al粉末为原料制备了整体蜂窝材料,并将该材料于氩气保护下在1 200 ℃原位反应烧结2 h获得了Al2O3/FeCrNi复合蜂窝载体材料。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、力学性能测试机对Al2O3/FeCrNi复合蜂窝载体材料的微观组织、相结构及力学性能进行分析。结果表明:经烧结后Al2O3/FeCrNi蜂窝基体组织为γ-Fe(NiCr),原位反应生成的Al2O3一部分以团聚的形态分布在基体晶粒间隙处,一部分以颗粒状弥散分布在基体中;当Al2O3的质量分数低于1.5%,Al2O3/FeCrNi复合蜂窝载体抗压强度能保持在30 MPa以上;但当Al2O3质量分数的超过1.5%,随着Al2O3含量的升高,蜂窝载体抗压强度快速下降;随着Al2O3质量分数的增加,Al2O3/FeCrNi复合蜂窝载体表面催化活性涂层负载率增大,表面附着性能提高;当Al2O3的质量分数为1.5%、烧结温度为1 200 ℃时,Al2O3/FeCrNi复合蜂窝载体的抗压强度高达31.5 MPa,表面附着性强,与催化活性涂层结合牢固,综合性能优良。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建新
周芸
汪天尧
闫敬明
郭路
左孝青
关键词:  FeCrNi合金  氧化铝  蜂窝载体  原位反应  粉末增塑挤压    
Abstract: In order to prepare the Al2O3/FeCrNi composite honeycomb carrier materials with excellent performance, FeCrNi alloy powder, Fe2O3 powder, Al powder were used as raw materials, the monolithic honeycomb structure was formed by mixing powder, kneading and extruding, then in-situ reaction sintered at 1 200 ℃ for 2 h under the protection of argon gas, and Al2O3/FeCrNi composite honeycomb carrier materials was fabricated. With SEM, XRD and universal testing machine, the structure and mechanical property of Al2O3/FeCrNi composite honeycomb carrier materials were studied. The results show that the matrix of Al2O3/FeCrNi composite honeycomb is γ-Fe(NiCr) after sintering, the Al2O3 formed by the in-situ reaction is distributed partly in the grain boundary of the matrix in the form of agglomeration, and partly in the matrix in a circular granular manner; while the mass fraction of Al2O3 is lower than 1.5%, the compressive strength of Al2O3/FeCrNi composite honeycomb carrier is maintained above 30 MPa; while the mass fraction of Al2O3 is higher than 1.5%, the compressive strength of honeycomb carrier decreases rapidly with the increase of Al2O3 content; with the mass fraction of Al2O3 increasing, the load rate of catalytic active coating on the surface of Al2O3/FeCrNi composite honeycomb carrier increases, and the performance of surface load is improved; while the mass fraction of Al2O3 is 1.5% and the sintering temperature is at 1 200 ℃, the compressive strength of Al2O3/FeCrNi composite honeycomb carrier is as high as 31.5 MPa, and it has strong surface adhesion, solid combination with catalytic active coating, and excellent comprehensive performance.
Key words:  FeCrNi alloy    aluminium oxide    honeycomb carrier    in-situ reaction    powder plastic extrusion
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51861020;51264024)
通讯作者:  zyuncrystal@qq.com   
作者简介:  郭建新,昆明理工大学材料科学与工程学院硕士研究生,研究方向为金属复合材料。
周芸,2006年获昆明理工大学材料学博士研究生学位,现在昆明理工大学材料科学与工程学院工作,教授,硕士研究生导师。2001年至2002年在美国南加州大学访学,2008年至2009年在英国利物浦大学访学。多年来,承担或作为主要成员完成国家级、省级及企业合作项目20余项。其中作为主要成员参与完成的云南省自然科学基金重点项目“泡沫金属新材料技术的应用基础研究” 获云南省自然科学奖二等奖。发表论文60余篇,获国家发明专利20余项,翻译专著一部《多孔泡沫金属》。近年来主要研究方向为金属多孔材料、金属复合材料的制备、组织结构及性能表征。
引用本文:    
郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
GUO Jianxin, ZHOU Yun, WAMG Tianyao, YAN Jingming, GUO Lu, ZUO Xiaoqing. Preparation and Property of Al2O3/FeCrNi Composite Honeycomb Carrier Materials. Materials Reports, 2022, 36(9): 20120112-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120112  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20120112
1 Yao Z H. Internal Combustion Engine & Parts, 2019, 280(4),182(in Chinese).
姚章华. 内燃机与配件, 2019, 280(4),182.
2 Lei J L, Yang F, Liu Y Y, et al. Environmental Research and Monitoring, 2019, 32(1),42(in Chinese).
雷经纶, 杨帆, 刘媛媛, 等. 环境研究与监测, 2019, 32(1),42.
3 Yu J F. Environment and Development, 2017, 29(9), 32(in Chinese).
余建峰. 环境与发展, 2017, 29(9), 32.
4 Zheng Z, Ge P. Transport Energy Conservation & Environmental Protection, 2020, 16(3),9(in Chinese).
郑洲,葛鹏. 交通节能与环保, 2020, 16(3),9.
5 Zhang H F. Internal Combustion Engine, 2013(2),1(in Chinese).
章海峰. 内燃机, 2013(2), 1.
6 Zhi H, Tang H P, Ma J, et al. Materials Reports A: Review Ppaers, 2014,28(2),80(in Chinese).
支浩,汤慧萍,马军,等. 材料导报:综述篇, 2014, 28(2), 80.
7 Tang L, Xiong X, Li X J, et al. Automobile Applied Technology, 2014(7),15(in Chinese).
唐磊,熊新,李晓军,等. 汽车实用技术, 2014(7),15.
8 Zhang Z J, Guan L. New Chemical Materials, 2015, 43(4),21(in Chinese).
张忠金,关磊. 化工新型材料, 2015, 43(4),21.
9 Peng X H, Wang Y. Transport Energy Conservation & Environmental Protection, 2015,11(6),27(in Chinese).
彭小红,王玉. 交通节能与环保, 2015, 11(6), 27.
10 Wang W, Wu X D, Weng D, et al. Science & Technology Review, 2011, 29(31),70(in Chinese).
王炜,吴晓东,翁端,等. 科技导报,2011,29(31),70.
11 Liang H L, Wu Y X, Zhao C L, et al. Journal of Ceramics, 2017,38(5),665(in Chinese).
梁海龙,吴彦霞,赵春林,等. 陶瓷学报, 2017, 38(5), 665.
12 Yang Q S, Lan S K. Hunan Nonferrous Metals, 2013,29(1),49(in Chinese).
杨庆山,兰石琨. 湖南有色金属, 2013, 29(1), 49.
13 Han Z B. Solidification features of FeCrAl stainless steel used as automobile exhaust purifier carrier. Ph.D. Thesis,University of Science and Technology Beijing, China, 2016(in Chinese).
韩志彪. 汽车尾气净化器载体用FeCrAl不锈钢凝固特性研究. 博士学位论文,北京科技大学, 2016.
14 Nonnenmann M. SAE Trans,1985,Section 1,1814.
15 Murawaki K, Shirahata J, Katou Y. US patent, US9381467 B2, 2010.
16 Capdevila C, Miller M K, Pimentel G, et al. Scripta Materialia, 2012, 66(5),254.
17 Kolodiy I, Kovalenko V I, Stoev P I, et al. Functional Materials,2020,27(1),79.
18 Osaki M, Miura M. US patent, US9050584 B2, 2015.
19 Iwami K, Kasuya M, Nagasaki S, et al. patent,EP1251250 B1, 2013.
20 Gurrappa I, Weinbruch S, Naumenko D, et al. Materials & Corrosion, 2000, 51(4),224.
21 Zhang Z Q, Huan Y F, He X, et al. Precious Metals, 2009, 30(1),26.
22 Putrasari Y, Untoro P, Hasan S, et al. Mechatronics Electrical Power & Vehicular Technology, 2012, 1(2), 53.
23 Ye D L. Shiyong wujiwu relixue shuju shouce, Metallurgical Industry Press, China, 1981(in Chinese).
叶大伦. 实用无机物热力学数据手册,冶金工业出版社, 1981.
24 Li M C, Gong Q, Yang Y Q, et al. Acta Materiae Compositae Sinica, 2016, 33(10),2237(in Chinese).
李明超,龚泉,杨一群,等. 复合材料学报, 2016,33(10),2237.
25 Zhang Z Q, Heng Y F, He X K, et al. Small Internal Combustion Engine and Vehicle Technique, 2009, 38(4),81(in Chinese).
张振强,桓源峰,贺小昆,等. 小型内燃机与摩托车,2009,38(4),81.
[1] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[2] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[3] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[4] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[5] 张婷, 刘桂华, 陈斌斌, 齐天贵, 周秋生, 彭志宏, 李小斌. 高比表面积氧化铝微粉从碱性废水中除氟[J]. 材料导报, 2020, 34(4): 4020-4024.
[6] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[7] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[8] 车春霞, 蔡小霞, 温翯, 苟尕莲, 薛文利, 韩伟, 梁玉龙, 张峰, 景喜林. 液相法制备活性氧化铝粉体的研究现状[J]. 材料导报, 2019, 33(Z2): 147-149.
[9] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[10] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[11] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[12] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[13] 鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
[14] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[15] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed