Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21110039-6    https://doi.org/10.11896/cldb.21110039
  高分子与聚合物基复合材料 |
利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能
杨薛明1,2,*, 胡宗杰1,2, 王炜晨1,2, 刘强1,2, 王帅1,2
1 华北电力大学动力工程系, 河北 保定 071003
2 河北省低碳高效发电技术重点实验室, 河北 保定 071003
Enhanced Thermal Conductivity of Epoxy Composites with Sucrose Modified Boron Nitride
YANG Xueming1,2,*, HU Zongjie1,2, WANG Weichen1,2, LIU Qiang1,2, WANG Shuai1,2
1 School of Power Engineering, University of North China Electric Power, Baoding 071003,Hebei, China
2 Hebei Province Key Laboratory of Low-carbon High-efficiency Power Generation Technology, Baoding 071003,Hebei, China
下载:  全 文 ( PDF ) ( 3090KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环氧树脂具有质量较轻、防腐性能和绝缘性能优良等一系列优势,因而被广泛应用于电气装备、高电压绝缘系统和航空航天等诸多领域。但环氧树脂的本征热导率较低,约为0.11~0.19 W/(m·K),如此低的热导率不利于系统及时有效地散热。氮化硼纳米片(BNNS)由于其优良的导热性能和绝缘性能,在高电压绝缘系统中具有广阔的应用前景。然而,BNNS制备流程复杂以及在液体中分散性差是目前限制其广泛应用的主要原因。采用一种简单而有效的蔗糖辅助机械化学剥离(SAMCE)方法来同时实现BNNS的剥离和改性,将蔗糖剥离改性得到的六方氮化硼(h-BN)加入环氧树脂中,添加改性h-BN的质量分数为15%时,复合材料的热导率可以达到0.51 W/(m·K),此时复合材料的热导率是纯环氧树脂材料的3.2倍,导热性能明显提升。为解释改性h-BN提升环氧树脂复合材料导热性能的机理,根据有效介质近似(EMA)理论模型反推计算得到改性前后h-BN/环氧树脂复合材料中填料颗粒与基质之间的界面热阻值,计算得到h-BN/环氧树脂复合材料的界面热阻为2.44×10-6 m2·K/W,改性h-BN/环氧树脂复合材料的界面热阻为4.73×10-7 m2·K/W,改性后的h-BN/环氧树脂复合材料的界面热阻值约为改性前的1/5。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨薛明
胡宗杰
王炜晨
刘强
王帅
关键词:  氮化硼  环氧树脂  界面热阻  蔗糖改性  热物性    
Abstract: Epoxy resin has a series of advantages such as light weight, excellent anti-corrosion performance and excellent insulation performance, so it is widely used in many fields such as electrical equipment, high-voltage insulation system and aerospace. However, the intrinsic thermal conductivity of epoxy resin is low, about 0.11—0.19 W/(m·K). Such a low thermal conductivity is not conducive to the timely and effective heat dissipation of the system. Boron nitride nanosheets (BNNS) have broad application prospects in high-voltage insulation systems due to their excellent thermal conductivity and insulation properties. However, the complex preparation process and poor dispersibility of BNNS in liquids are currently the main factors that limit their wide application. A simple and effective sucrose-assisted mechanochemical peeling (SAMCE) method was used to realize the peeling and modification of BNNS at the same time. The h-BN obtained by the sucrose peeling modification was added to the epoxy resin. When the mass fraction of modified h-BN was 15%, the thermal conductivity of the composite material could reach 0.51 W/(m·K). At this time, the thermal conductivity of the composite material was 3.2 times that of the pure epoxy resin material, and the thermal conductivity was significantly improved. In order to explain the mechanism of modified h-BN to improve the thermal conductivity of epoxy resin composites, the interface thermal resistance between filler particles and matrix in the h-BN/epoxy composite before and after the modification was calculated based on the effective medium approximation (EMA) theoretical model. The calculated interface thermal resistance of the h-BN/epoxy resin composite material was 2.44×10-6 m2·K/W, and the interface thermal resistance of the modified h-BN/epoxy resin composite material was 4.73×10-7 m2 ·K/W, the interface thermal resistance of the modified h-BN/epoxy resin composite was about 1/5 of that before modification.
Key words:  boron nitride    epoxy resin    interface thermal resistance    sucrose modification    thermophysical property
发布日期:  2023-02-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52076080)
通讯作者:  *杨薛明,教授,博士研究生导师。1993年获得华北电力大学工学学士学位,1996年获得华北电力大学工学硕士学位,2007年获得华北电力大学工学博士学位,2009年留学美国匹兹堡大学从事博士后研究,2014年在清华大学航天航空学院从事博士后研究,现从事微纳尺度传热传质、复合材料热物性相关研究。共发表论文60余篇,其中SCI收录30余篇。   
引用本文:    
杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
YANG Xueming, HU Zongjie, WANG Weichen, LIU Qiang, WANG Shuai. Enhanced Thermal Conductivity of Epoxy Composites with Sucrose Modified Boron Nitride. Materials Reports, 2023, 37(2): 21110039-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110039  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21110039
1 Wang W, Xia Y. Insulating Materials, 2012, 45(1), 19 (in Chinese).
王文, 夏宇. 绝缘材料, 2012, 45(1), 19.
2 Li K S, Wang Q. Functional Materials, 2002(2), 136 (in Chinese).
李侃社, 王琪. 功能材料, 2002(2), 136.
3 Zhou W Y. Research on high thermal conductivity and insulating polymer composite materials. Master's Thesis, Northwestern Polytechnical University, China, 2007 (in Chinese).
周文英. 高导热绝缘高分子复合材料研究. 硕士学位论文, 西北工业大学, 2007.
4 Zhao J Q, Meng F C, Shen J B, et al. Chemical Industry and Engineering, 2020, 37(3), 67 (in Chinese).
赵敬棋, 孟凡成, 申景博, 等. 化学工业与工程, 2020, 37(3), 67.
5 Peng P. Preparation and research of high thermal conductivity epoxy resin composites. Master's Thesis, Shanghai Jiaotong University, 2011 (in Chinese).
彭鹏. 高导热环氧树脂复合材料的制备与研究. 硕士学位论文, 上海交通大学, 2011.
6 Yu J H. Preparation and properties of high thermal conductivity polymer matrix composites. Master's Thesis, Shanghai Jiaotong University, China, 2012 (in Chinese).
虞锦洪. 高导热聚合物基复合材料的制备与性能研究. 硕士学位论文, 上海交通大学, 2012.
7 Wang T T. Electric-thermal field research on stator main insulation of air-cooled turbo-generator. Master's Thesis, Beijing Jiaotong University, China, 2019 (in Chinese).
王婷婷. 空冷汽轮发电机定子主绝缘的电-热场研究. 硕士学位论文, 北京交通大学, 2019.
8 Weng L, Wang H B, Zhang X R, et al. Nano, 2018, 13(11), 1850133.
9 Meng X, Du X B. High Voltage, 2016, 1(1), 34.
10 Liew K M, Lei Z X, Zhang L W. Composite Structures, 2015, 120, 90.
11 Song S H, Park K H, Kim B H, et al. Advanced Materials, 2013, 25(5), 732.
12 Li P M, Zhong C W, Tong Q M, et al. Electronic Components and Materials, 2011, 30 (11), 26 (in Chinese).
李攀敏, 钟朝位, 童启铭, 等. 电子元件与材料, 2011, 30(11), 26.
13 Du B X, Du Q, Li J, et al. High Voltage Technology, 2018, 44 (8), 2646.
14 Hsieh C Y, Chung S L. Journal of Applied Polymer Science, 2010, 102(5), 4734.
15 Hou G, Cheng B, Ding F, et al. ACS Applied Materials & Interfaces, 2015, 7(4), 2873.
16 Dong H, Wen B, Zhang Y, et al. ACS Omega, 2017, 2(5), 2344.
17 Chen Y M, Ting J M. Carbon, 2002, 40(3), 359.
18 Li J, Qi S, Zhang M, et al. Journal of Applied Polymer Science, 2015, 132(33), 42306.
19 Zhang X X, Wen H, Chen X Y, et al. Energies, 2017, 10(5), 692.
20 Ma Z N, Zhong B, Wang P Q, et al. Materials Reports B: Research Papers, 2016, 30(6), 65 (in Chinese).
马振宁, 钟博, 王培侨, 等. 材料导报:研究篇, 2016, 30(6), 65.
21 Lin Z Y, Mcnamara A, Liu Y, et al. Composites Science and Technology, 2014, 90, 123.
22 Wang W, Cao W R, Chen T T, Journal of Composite Materials, 2018, 35(2), 275 (in Chinese).
汪蔚, 曹万荣, 陈婷婷. 复合材料学报, 2018, 35(2), 275.
23 Gao L D, Li X, Zhang X Z, et al. Journal of Composite Materials, 2022, 39(6), 2599 (in Chinese).
高利达, 李祥, 张效重, 等. 复合材料学报, 2022, 39 (6), 2599.
24 Chen J, Huang X Y, Zhu Y K, et al. Advanced Functional Materials, 2017, 27(5), 1604754.
25 Chen S H, Xu R Z, Liu J M, et al. Advanced Materials, 2019, 31(10), 129.
26 Wang Z, Zhu Y J, Ji D, et al. Chemistryselect, 2020, 5(12), 3567.
27 Gu J, Zhang Q, Jing D, et al. Polymers for Advanced Technologies, 2012, 23(6), 1025.
28 Lee D, Lee S, Byun S, et al. Journal of Composites Part A, 2018, 107, 217.
29 Nan C W, Birringer R, Clarke D R, et al. Journal of Applied Physics, 1997, 81(10), 6692.
30 Pan C, Zhang J Q, Kou K C, et al. International Journal of Heat and Mass Transfer, 2018, 120, 1.
[1] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[2] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[3] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[4] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[5] 吉静茹, 许智鹏, 强军锋, 刘育红. 有机硅改性环氧树脂薄膜封装材料的制备及性能研究[J]. 材料导报, 2022, 36(11): 20120032-9.
[6] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[7] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[8] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[9] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[10] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[11] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[12] 陈谦, 王朝辉, 傅豪, 樊振通, 刘鲁清. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16): 16172-16177.
[13] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[14] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[15] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed