Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21060032-6    https://doi.org/10.11896/cldb.21060032
  无机非金属及其复合材料 |
石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响
董健苗1, 邹明璇1, 周铭2,3,*, 余浪1, 曹嘉威1, 庄佳桥1, 王留阳1, 王慧敏1
1 广西科技大学土木建筑工程学院,广西 柳州 545006
2 广西科技大学机械与汽车工程学院,广西 柳州 545006
3 广西清鹿新材料科技有限公司,广西 柳州 545006
Effect of Graphene and Graphene Oxide on Hydration Process and Strength of Cement-based Materials
DONG Jianmiao1, ZOU Mingxuan1, ZHOU Ming2,3,*, YU Lang1, CAO Jiawei1, ZHUANG Jiaqiao1, WANG Liuyang1, WANG Huimin1
1 School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
2 School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
3 Guangxi Qinglu New Material Technology Co., Ltd., Liuzhou 545006, Guangxi, China
下载:  全 文 ( PDF ) ( 20464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用超声分散方法将插层剥离法制备的石墨烯pG(Peeling graphene)及传统Hummers法制备的氧化石墨烯hGO(Hummers graphene oxide)制备成纳米片分散液,研究了两种分散液对水泥基材料凝结时间、水化产物微观结构及强度的影响。结果表明:两种纳米片分散液的掺入均能明显缩短水泥的凝结时间,减少水泥石内部的孔隙,使结构致密化,部分CH晶体呈现出由一位点向外发散的多面聚集的结构状态。pG和hGO的加入能加速水泥水化反应速率,未改变水化产物的种类,还可提高水泥基材料的力学性能,尤其是3 d抗折强度提高最为明显。掺pG的试件均比掺hGO的试件强度略高,这为成本低、尺寸可控、可批量生产的石墨烯产品在水泥基材料中的应用提供了广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董健苗
邹明璇
周铭
余浪
曹嘉威
庄佳桥
王留阳
王慧敏
关键词:  石墨烯  氧化石墨烯  水泥基材料  水化过程  强度    
Abstract: In this work, peeling graphene (pG) prepared by intercalation stripping method and Hummers graphene oxide (hGO) prepared by Hummers method were prepared into nano sheet dispersion by ultrasonic dispersion method. The effects of two kinds of dispersions on setting time,microstructure of hydration products, crystalline phase and strength of cement-based materials were studied. The results show that the mixing of two nano dispersions can shorten the setting time reduce the pores in the cement paste, and densify the structure, and some CH crystal present a multi-faceted aggregation structure state that diverges from a single point. The addition of pG and hGO can accelerate the hydration reaction of cement, do not change the types of hydration products, and can improve the mechanical properties of cement-based materials, especially the 3 d flexural strength. The strength of cement sample with pG is slightly higher than that of hGO, which provides a broad prospect for the application of low-cost, size-controllable and mass-produced graphene products in cement-based materials.
Key words:  graphene    graphene oxide    cement based materials    hydration process    strength
发布日期:  2023-01-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51568009);广西科技攻关项目(桂科攻1114016-6);广西研究生教育创新计划项目(GKYC202009)
通讯作者:  3323296017@qq.com   
作者简介:  董健苗,广西科技大学土木建筑工程学院教授、硕士研究生导师。1994年武汉工业大学无机非金属材料专业本科毕业,2001年武汉理工大学材料学专业硕士毕业后到广西科技大学工作至今。2016年1月至9月在英国UCL大学访学。目前主要从事高性能水泥混凝土等方面的研究工作。发表论文40余篇,包括Cement and Concrete ResearchJournal of Wuhan University of Technology-Materials Science Edition、《硅酸盐学报》《建筑材料学报》等。
周铭,研究员,清华大学摩擦学国家重点实验室博士,广西科技大学机械与汽车工程学院教授,广西清鹿新材料科技有限责任公司首席科学家,硕士研究生导师。工信部人才交流中心特聘讲师,广西壮族自治区首批“八桂青年学者”。目前从事新材料的机械表/界面行为调控与应用研究工作。在FrictionCarbonACS Appl. Mater. & InterfacesAdv. Mat. Interfaces等期刊发表20余篇SCI收录论文,SCI他引超过400次。
引用本文:    
董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
DONG Jianmiao, ZOU Mingxuan, ZHOU Ming, YU Lang, CAO Jiawei, ZHUANG Jiaqiao, WANG Liuyang, WANG Huimin. Effect of Graphene and Graphene Oxide on Hydration Process and Strength of Cement-based Materials. Materials Reports, 2022, 36(24): 21060032-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060032  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21060032
1 Dong J M, Nie H, Yan Y J, et al. New Building Materials, 2016, 43(8), 89 (in Chinese).
董健苗, 聂浩, 燕元晶, 等. 新型建筑材料, 2016, 43(8), 89.
2 Raheem A, Mahdy M, Mashaly A A. Construction and Building Materials, 2019, 213, 561.
3 Sun X Y, Liu F, Wu Q S. New Building Materials, 2011(11), 22 (in Chinese).
孙小耀, 刘方, 吴其胜. 新型建筑材料, 2011(11), 22.
4 Cui H Z, Jin Z Y, Zheng D P, et al. Construction and Building Materials, 2018, 181, 713.
5 Dong J M, Liu C, Long S Z. Journal of Building Materials, 2012, 15(4), 490 (in Chinese).
董健苗, 刘晨, 龙世宗. 建筑材料学报, 2012, 15(4), 490.
6 Kovtyukhova N I, Ollivier P J, Martin B R, et al. Chemistry of Materials, 1999, 11( 3), 771.
7 Lee C, Wei X D, Kysar J W, et al. Science, 2008, 321, 385.
8 Lv S H, Hu H Y, Zhang J, et al. Nanomaterials, 2017, 12(7), 457.
9 Lin C, Wei W, Hu Y H. Journal of Physics and Chemistry of Solids, 2015, 89(3), 128.
10 Du T. Effect of graphene oxide on properties of cement-based-composite. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
杜涛. 氧化石墨烯水泥基复合材料性能研究. 硕士学位论文, 哈尔滨工业大学, 2014.
11 Sun T. Effect of GO on the structure and properties of cement-based materials. Master's Thesis, Shanxi University of Science and Technology, China, 2015 (in Chinese).
孙婷. 氧化石墨烯对水泥基材料结构与性能的影响. 硕士学位论文, 陕西科技大学, 2015.
12 Dong J M, Yu L, Wang H M, et al. Journal of Guangxi University of Science and Technology, 2021, 32(3), 26 (in Chinese).
董健苗, 余浪, 王慧敏, 等. 广西科技大学学报, 2021, 32(3), 26.
13 Wu L, Li W, Li P, et a1. Small, 2014, 10(7), 1421.
14 Pei J Y, Chang Y, Zhou S S, et a1. New Chemical Materials, 2018, 46(5), 1 (in Chinese).
裴久阳, 常艺, 周苏生, 等. 化工新型材料, 2018, 46(5), 1.
15 Samuel C, Zhu P, Jay G S, et al. Construction and Building Materials, 2014, 73, 113.
16 Li X, Luo S R. Acta Materiae Compositae Sinica, 2021, 38(2), 612 (in Chinese).
李欣, 罗素蓉. 复合材料学报, 2021, 38(2), 612.
17 Locher, Friedrich W, Richartz W. Zem-Kalk-Gips, 1976, 29(10), 435.
18 Peng H, Ge Y P, Yang Z T, et al. Acta Materiae Compositae Sinica, 2018, 35(8), 2132(in Chinese).
彭晖, 戈娅萍, 杨振天, 等. 复合材料学报, 2018, 35(8), 2132.
19 Wang Y X. Study on mechanical properties and modification mechanism of multilayer graphene oxide-cement-based materials. Master's Thesis, Xi'an University of Technology, China, 2019 (in Chinese).
王奕璇. 多层氧化石墨烯-水泥基材料的力学性能和改性机理研究. 硕士学位论文, 西安理工大学, 2019.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[3] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[4] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[5] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[6] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[7] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[8] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[9] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[12] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[13] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[14] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed