Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21060263-7    https://doi.org/10.11896/cldb.21060263
  金属与金属基复合材料 |
复合材料工型梁压缩失效模式试验与仿真分析研究
邹雄辉, 高维成*, 刘伟, 周睿
哈尔滨工业大学航天学院,哈尔滨 150001
Experimental and Simulation Research on Compression Failure Mode of Composite I-beam
ZOU Xionghui,GAO Weicheng*,LIU Wei,ZHOU Rui
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 25230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料工型梁是飞机舱门结构中的重要承力部件,其在压缩载荷下的失稳行为和损伤特性是工程设计中关注的要点。为了研究复合材料工型梁的压缩性能和失效模式,开展了轴向压缩试验和数值仿真计算。选取改进的Hashin准则判定层内损伤,引入内聚力胶层单元模拟层间损伤,并采用一种新的基于复合材料破坏现象的刚度退化模型对材料的性能进行折减。在模型中综合考虑了纤维扭折和翼缘侧向支撑作用对材料性能压缩失效的影响。计算得到的载荷-位移曲线、载荷-应变曲线、破坏模式以及破坏载荷均与试验结果符合较好,验证了模型的准确性。基于经试验验证后的模型,对工型梁截面进行了参数化分析,研究了长宽比、翼缘宽厚比对复合材料工型梁屈曲性能和承载能力的影响规律,为实际工程结构优化及选型提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹雄辉
高维成
刘伟
周睿
关键词:  复合材料工型梁  压缩试验  失效  分层损伤  截面参数    
Abstract: Composite I-beam is an essential load-bearing component in aircraft structure, and its instability behavior and damage characteristics under compressive load are the key points in engineering design. In order to study the compression performance and failure modes of composite I-beams, axial compression tests and numerical simulation calculations were carried out. The improved Hashin criterion was selected to determine the intra-layer damage, the cohesive adhesive element was introduced to simulate the inter-layer damage, and a stiffness degradation model based on the failure phenomenon of composite materials was used to reduce the material stiffness. In the model, the effects of fiber deflection and flange lateral support on the material performance after compression failure were comprehensively considered. The calculated load-displacement curve, load-strain curve, failure mode and failure load are in good agreement with the test results, which verifies the accuracy of the finite element model. Based on the experimentally verified model, a parametric analysis of the I-beam section was carried out, and the influence of the aspect ratio and flange width-thickness ratio on the buckling performance and bearing capacity of the composite I-beam was investigated, providing a reference for engineering structure optimization and selection.
Key words:  composite I-beam    compression test    failure    delamination    section parameters
发布日期:  2023-01-03
ZTFLH:  TB332  
通讯作者:  gaoweicheng@sina.com   
作者简介:  邹雄辉, 2018年获得哈尔滨工业大学航天学院工程力学本科学位,2020年获得哈尔滨工业大学航天学院固体力学硕士学位。现于哈尔滨工业大学航天学院攻读固体力学博士,主要研究方向为航空复合复合材料结构的损伤与失效。
高维成,哈尔滨工业大学航天学院航天科学与力学系教授、博士研究生导师,力学学科教授会成员。1999年获得哈尔滨建筑大学结构工程专业博士学位,2000年进入哈尔滨工业大学博士后流动站,2004受聘为哈尔滨工业大学航天学院航天科学力学系副教授,同年以访问学者身份前往莫斯科国立建筑大学,回国后担任航天科学与力学系教授至今。主要从事轻量化薄壁结构稳定性及后屈曲强度、飞机典型复合材料结构缺陷和损伤后可靠性分析与剩余强度评估、热力耦合作用下复合材料结构稳定性与强度问题、飞机复合材料结构多场耦合下静强度测试方法等方面的研究。著有国内外论文50余篇,专利5项。
引用本文:    
邹雄辉, 高维成, 刘伟, 周睿. 复合材料工型梁压缩失效模式试验与仿真分析研究[J]. 材料导报, 2022, 36(24): 21060263-7.
ZOU Xionghui,GAO Weicheng,LIU Wei,ZHOU Rui. Experimental and Simulation Research on Compression Failure Mode of Composite I-beam. Materials Reports, 2022, 36(24): 21060263-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060263  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21060263
1 Wang Y W, Yuan Y C, Tang W Y, et al. Ship Science and Technology, 2020,42(19), 16 (in Chinese).
王艺伟, 袁昱超, 唐文勇,等. 舰船科学技术, 2020, 42(19), 16.
2 Anyfantis K N, Tsouvalis N G. Applied Composite Materials, 2012, 19(3-4), 1.
3 Chen N Z, Guedes S C.Journal of Reinforced Plastics & Composites, 2007, 26(10), 1021.
4 Kolanu N R, Raju G, Ramji M.Composite Structures, 2018, 196, 135.
5 Zou A L, Ren X H, Qin Z Q. Engineering Mechanics, 2011,28(4), 134 (in Chinese).
邹爱丽, 任晓辉, 秦政琪. 工程力学, 2011, 28(4), 134.
6 Labeas G, Belesis S, Stamatelos D.Composites Part B Engineering, 2008, 39(2), 304.
7 Zhu J H, Zeng J J, Chen B Q.Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5), 785 (in Chinese).
朱建辉, 曾建江, 陈滨琦. 机械科学与技术, 2015, 34(5),785.
8 Namdar , Darendeliler H. Composites Part B: Engineering, 2017,120,143.
9 Liu B. Buckling analysis and stacking sequence optimization of composite laminatedstructure. Master's Thesis, Dalian University of Technology,China, 2018(in Chinese).
刘博. 复合材料层合板结构屈曲分析及铺层顺序优化. 硕士学位论文, 大连理工大学, 2018.
10 Akbaş Š D. Engineering Fracture Mechanics, 2019, 212,70.
11 Niu R T. Buckling and ultimate resistance of high-strength aluminum thin-walled stiffened beams. Ph.D. Thesis, Harbin Institute of Technology, China,2015(in Chinese).
牛瑞涛. 高强铝合金加筋薄壁梁屈曲与极限承载特性研究. 博士学位论文, 哈尔滨工业大学, 2015.
12 Chen B Q, Zeng J J, Wang Y Q, et al.Acta Materiae Compositae Sinica, 2017(4),11(in Chinese).
陈滨琦, 曾建江, 王玉青,等. 复合材料学报, 2017(4), 11.
13 Zhang J, Zhou L, Chen Y, et al.Journal of Composite Materials, 2016,50(16),2271.
14 Berbinau P, Soutis C, Guz I A.Composites Science & Technology, 1999, 59( 9),1451.
15 Puck A, Schürmann H. Failure Criteria in Fibre-Reinforced-Polymer Composites. Elsevier, 2004, pp.264.
16 Schuecker C, Pettermann H E. Composite Structures, 2006, 76(1/2),162.
17 Ribeiro M L, Tita V, Vandepitte D.Composite Structures, 2012, 94(2),635.
18 Zhang J. Theoretical and experimental study on damage and failure beha-vior of composite web plates with cutout. Ph.D. Thesis, Harbin Institute of Technology, China,2019 (in Chinese).
张健. 含开口复合材料梁腹板损伤及失效模式理论与试验研究. 博士学位论文, 哈尔滨工业大学, 2019.
[1] 王好平, 张蒙祺, 莫继良. 盾构/TBM滚刀刀圈性能强化研究现状[J]. 材料导报, 2022, 36(7): 22010052-9.
[2] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[3] 邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
[4] 王文权, 王苏煜, 徐宇欣, 张新戈, 毕英超, 石磊. 胶接与钎焊铝蜂窝板力学性能研究[J]. 材料导报, 2022, 36(23): 21070282-6.
[5] 刘文超, 高峰, 曲江英, 籍少敏, 霍延平. 高镍三元正极材料失效机制与改性[J]. 材料导报, 2022, 36(21): 20100053-9.
[6] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[7] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[8] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[9] 张健, 李鑫, 徐琦, 胡永乐, 毛聪, 张明军. 钎焊金刚石工具失效机理及其抑制策略研究进展[J]. 材料导报, 2022, 36(15): 20120220-7.
[10] 孟云蛟, 张有宏, 常新龙, 胡宽, 齐重阳, 王震, 朱雪蒙. 含双孔国产T800碳纤维复合材料层合板失效模式研究[J]. 材料导报, 2022, 36(14): 21030285-7.
[11] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[12] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[13] 刘腾, 朱政强, 吴蔺峰. 中锰TRIP钢电阻点焊研究进展与展望[J]. 材料导报, 2022, 36(10): 20080023-7.
[14] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[15] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed