Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20080023-7    https://doi.org/10.11896/cldb.20080023
  金属与金属基复合材料 |
中锰TRIP钢电阻点焊研究进展与展望
刘腾, 朱政强*, 吴蔺峰
南昌大学机电工程学院,南昌 330031
Research Progress and Prospect of Resistance Spot Welding of Medium-Mn TRIP Steel
LIU Teng, ZHU Zhengqiang*, WU Linfeng
School of Mechatronical Engineering, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 5313KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 面对日益严峻的环境问题,汽车工业应进一步减轻整车质量以实现节能减排的目标。传统质轻高强钢,如双相钢(DP)、相变诱发塑性钢(TRIP)和奥氏体钢等,因生产成本高、强塑积较低和冶金等问题限制了其应用。中锰TRIP钢强塑积可达30GPa%~60GPa%,实现了优异综合力学性能与质轻特点的良好结合,在车身轻量化方面具有极广的应用前景。本文从中锰TRIP钢微观组织演变规律与形变机理出发,探讨影响其电阻点焊接头质量的主要因素,概述了母材化学成分、微观结构、熔核几何尺寸和焊接工艺等方面对其质量的影响。通过分析焊接过程中奥氏体的马氏体相变、晶粒尺寸、形貌等特征,揭示了影响中锰TRIP钢焊点热影响区韧性的内在因素。综述了近年来先进高强钢(AHSS)的研究,阐述了AHSS三种典型焊点失效模式、失效内在机制与其影响因素,重点关注了焊点在拉剪试验中的断裂行为,提出了一种通过预测临界熔核尺寸以保证拔出失效(Pull-out failure, PF)的方法。最后,总结了焊后改性方面的最新研究,并展望了未来中锰TRIP钢电阻点焊的研究热点与方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘腾
朱政强
吴蔺峰
关键词:  中锰TRIP钢  电阻点焊  微观组织  失效模式    
Abstract: In response to increasingly severe environmental problems, the automotive industry should cut down the weight of vehicles to achieve energy-saving and emission-reduction goals. The application of traditional light-weight high-strength steels, such as dual-phase steel (DP), transformation-induced plasticity steel (TRIP), austenitic steel, etc., is limited by due to production costs, low plastic product and metallurgical issues. The strong plastic product of medium manganese TRIP steel can reach 30GPa%—60GPa%, which achieves a good combination of excellent comprehensive mechanical properties and lightweight characteristics, and has extremely high application prospects in lightening the body. Based on the evolution of microstructure and deformation mechanism of medium-Mn TRIP steel, the main factors on the quality of the resistance spot welding joint were discussed, and the effects of chemical composition, microstructure, nugget geometry and welding process of the base metal were summarized. By analyzing the characteristics of martensite transformation, grain size, and morphology of austenite during the welding process, the internal factors on the toughness of the heat-affected zone of the welded joint of the medium-Mn TRIP steel were revealed. This review summarized the research on advances of high strength steel (AHSS) in recent years, expounded the three typical failure modes of AHSS solder joints, the internal failure mechanism and its influencing factors, and focused on the fracture behavior of solder joints in tensile and shear tests. A method for predicting the critical nugget size to ensure pull-out failure (PF) was proposed. Finally, the latest research on post-welding modification was summarized, and future research hotspots and directions of resistance spot welding of medium-Mn TRIP steel were prospected.
Key words:  medium-Mn TRIP steel    resistance spot welding    microstructure    failure mode
发布日期:  2022-05-24
ZTFLH:  TG40  
基金资助: 国家自然科学基金(51861024)
通讯作者:  zhuzhq01@126.com   
作者简介:  刘腾,2018年于九江学院获学士学位,2018年9月至2021年6月为南昌大学机电工程学院硕士研究生,目前主要的研究领域为第三代汽车用钢中锰TRIP钢电阻点焊熔核形核机理和焊点组织调控研究。
朱政强,南昌大学机电工程学院教授,1999年于中国石油大学(华东)机械系获学士学位,2002年于天津大学材料科学与工程学院获硕士学位,2005年于上海交通大学材料科学与工程学院获博士学位,主要从事超声增材制造、先进高强钢电阻点焊和先进制造技术研究,在国内外重要期刊发表论文80余篇,其中SCI、EI检索40多篇。
引用本文:    
刘腾, 朱政强, 吴蔺峰. 中锰TRIP钢电阻点焊研究进展与展望[J]. 材料导报, 2022, 36(10): 20080023-7.
LIU Teng, ZHU Zhengqiang, WU Linfeng. Research Progress and Prospect of Resistance Spot Welding of Medium-Mn TRIP Steel. Materials Reports, 2022, 36(10): 20080023-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080023  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20080023
1 Pouranvari M, Marashi S P H. Materials Science and Technology, 2010, 26(9), 1137.
2 Cai Z H, Ding H, Xue X, et al. Scripta Materialia, 2013, 68(11), 865.
3 Cai Z H, Ding H, Misra R D K, et al. Acta Materialia, 2015, 84,229.
4 Cai Z H, Ding H, Misra R D K, et al. Materials Science and Enginee-ring: A, 2014, 595,86.
5 Latypov M I, Shin S, de Cooman B C, et al. Acta Materialia, 2016, 108,219.
6 Peterson W, Borchelt J. SAE Transactions, 2000, 109(5), 970.
7 Pouranvari M, Marashi S P H. Materials Science and Engineering: A, 2011, 528(29-30),8337.
8 Pouranvari M, Marashi S P H, Safanama D S. Materials Science and Engineering: A, 2011, 528(29-30),8344.
9 Loureiro A. Key Engineering Materials, 2002, 230, 31.
10 Yoo J, Han K, Park Y, et al. Materials Chemistry and Physics, 2014, 146(1-2),175.
11 Park G, Kim K, Uhm S, et al. Materials Science and Engineering: A, 2019,752,206.
12 Qiang J, Lei L, Wei G, et al. Metals,2018, 8(1),48.
13 Li J, Song R, Li X, et al. Materials Science and Engineering: A, 2019, 745,212.
14 Li X, Song R, Zhou N, et al. Materials Science and Engineering: A, 2018, 709, 97.
15 Haijun P, Hua D, Minghui C. Materials Science and Engineering: A, 2018, 736,375.
16 Gibbs P J, de Moor E, Merwin M J, et al. Metallurgical and Materials Transactions A , 2011, 42(12),3691.
17 Mohandas T, Reddy G M, Kumar B S. Journal of Materials Processing Technology, 1999, 88(1),284.
18 Osawa K, Suzuki Y, Tanaka S. Kawasaki Steel Technical Report, 2003(48),9.
19 Chen Y, Wang H, Cai H,et al. Materials, 2018, 11(11),2127.
20 Militzer M, Hawbolt E B, Meadowcroft T R, et al. Metallurgical & Materials Transactions A, 1996, 27(11),3399.
21 Hong S C, Lim S H, Hong H S, et al. Materials Science and Enginee-ring: A, 2003, 355(1-2),241.
22 ISO-18278-2, Resistance Welding-Weldability-Part 2: Evaluation Procedure for Weldability in Spot Welding, 2016.
23 Jha B K, Avtar R, Dwivedi V S. Transactions of the Indian Institute of Metals, 1996, 49, 133
24 Sp Ee R J G, Streicher A M, Matlock D K, et al. Symposium on Austenite Formation and Decomposition. Chicago, 2003, pp. 505.
25 Di X, Deng S, Wang B. Materials & Design, 2015, 66,169.
26 Sajjadi-Nikoo S, Pouranvari M, Abedi A, et al. Science & Technology of Welding & Joining, 2018, 23(1), 71.
27 Ashiri R, Marashi P, Park Y D. Welding Journal, 2018, 97(5),157.
28 Hochhauser D I F, Ernst W G. et al. Welding in the World, 2012, 56(5-6),77.
29 Krauss G. Materials Science and Engineering: A, 1999, 273,40.
30 Hernandez B V H, Kuntz M L, Khan M I, et al. Science & Technology of Welding & Joining, 2013, 13(8),769.
31 Khan M I, Kuntz M L, Zhou Y. Science and Technology of Welding & Joining, 2008, 13(3),294.
32 Weber G, Gäklü S. Welding in the World, Le Soudage Dans Le Monde, 2013, 50(3-4),3.
33 Pouranvari M. Materials Science and Engineering: A, 2012, 546,129.
34 Liu X D, Xu Y B, Misra R D K, et al. Journal of Materials Processing Technology, 2019, 263,186.
35 Liu S Y, Wang L, Kong L, et al. Electric Welding Machine, 2017, 47(4),1 (in Chinese).
刘思源, 王朗, 孔谅,等.电焊机, 2017, 47(4),1.
36 Wan X, Wang Y, Fang C. ISIJ International, 2014, 54(8),1883.
37 Baltazar H V H, Okita Y, Zhou Y. Welding Journal, 2012,91(10),278.
38 Park G, Kim K, Uhm S, et al. Materials Science and Engineering: A, 2019, 766, 138401.
39 Park G, Uhm S, Lee C. Materials Science and Engineering: A, 2020, 788,139477.
[1] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[2] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[3] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[4] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[5] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[6] 刘沁钰, 周利, 戎校宇, 杨海峰, 赵洪运. 镁锂合金焊接技术研究现状[J]. 材料导报, 2022, 36(10): 20080079-10.
[7] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[8] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[9] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[10] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[11] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[12] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[13] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[14] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed