Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030311-6    https://doi.org/10.11896/cldb.22030311
  无机非金属及其复合材料 |
rGO/NiCo复合材料制备及电化学性能研究
颜冬仙, 樊新*
桂林理工大学材料科学与工程学院,广西 桂林 541004
Preparation and Electrochemical Performance of rGO/NiCo Composites
YAN Dongxian, FAN Xin*
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 10706KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器因其能量密度大、功率密度高等优异性能而被认为是理想的储能器件,能在一定程度上有效解决能源问题。电极材料决定性影响着超级电容器的性能,而具有高理论比电容的过渡金属是人们的研究热点。镍钴双金属氧化物储能效力高,但是内阻大,导致倍率性能差。基于此,本工作利用简单的水热法成功合成rGO@NixCoy纳米复合材料,通过不断调控镍钴元素的相对比例来调整物质的形貌结构,找到其最佳比例。在所有纳米复合材料中,rGO/NiCo纳米复合材料在0.5 A/g下表现出600 F/g的优异比电容值,其组装的rGO/NiCo∥rGO柔性器件在1 A/g下的比电容为418.2 F/g,能量密度为98 Wh/kg,功率密度为1 300 W/kg,且在8 000次充放电循环后仍保持93%的比电容,同时固态柔性器件可以有效地在广泛的电压窗口中操作,优异的电化学性能预示了其在柔性超级电容器器件中的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜冬仙
樊新
关键词:  还原氧化石墨烯  镍钴双金属氧化物  形貌调控  超级电容器    
Abstract: Supercapacitors are considered as ideal energy storage devices due to their high energy density and high power density, which can effectively solve the energy problem to a certain extent. Electrode materials have a decisive influence on the performance of supercapacitors, and transition metals with high theoretical specific capacitance are the focus of research. Nickel-cobalt bimetallic oxides have high energy storage efficiency, but high internal resistance leads to poor rate performance. Based on this, rGO@NixCoy nanocomposites were successfully synthesized by simple hydrothermal method, and the morphologic structure of the material was adjusted by constantly adjusting the relative proportion of nickel and cobalt elements to find the best proportion. Among all the nanocomposites, rGO/NiCo nanocomposites show excellent specific capacitance of 600 F/g at 0.5 A/g, and the rGO/NiCo∥rGO flexible device has specific capacitance of 418.2 F/g and energy density of 98 Wh/kg with a power density of 1 300 W/kg. Maintaining a specific capacitance of 93% after 8 000 charge-discharge cycles, the solid-state flexible device can operate efficiently in a wide range of voltage windows. Excellent electrochemical performance predicts its application in flexible supercapacitor devices.
Key words:  rGO    nickel-cobalt bimetallic oxide    morphological control    supercapacitor
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB33  
基金资助: 广西自然科学基金((2020GXNSFAA159015)
通讯作者:  *樊新,桂林理工大学材料科学与工程学院教授、博士研究生导师。2000年中南大学化学系应用化学专业本科毕业,2007年中南大学化学系应用化学专业本科毕业,2010年中南大学粉末冶金研究院材料物理与化学专业博士毕业后到桂林理工大学工作至今。目前主要从事复合材料的研究,涉及纳米结构电极材料的设计、合成及其在能量储存与转化中的应用等方面的研究工作。发表论文30余篇,包括Carbon、Appl. Surf. Sci.、Sci. Rep.、RSC Adv.、Chinese J. Chem.、Chem. Phy. Lett.、Polymers、Org. Electron.、Front. Mater. Sci.、Colloid Polym. Sci.和Mater. Tech.等。xfan@glut.edu.cn   
作者简介:  颜冬仙,现为桂林理工大学材料科学与工程学院硕士研究生,在樊新教授的指导下进行研究。目前主要研究领域为超级电容器电极材料。
引用本文:    
颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
YAN Dongxian, FAN Xin. Preparation and Electrochemical Performance of rGO/NiCo Composites. Materials Reports, 2023, 37(18): 22030311-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030311  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030311
1 Wilberforce T, Olabi A G, Sayed E T, et al. Science of the Total Environment, 2021, 761, 143203.
2 Ram M, Osorio-Aravena J C, Aghahosseini A, et al. Energy, 2022, 238, 121690.
3 Obaideen K, Nooman-AlMallahi M, Alami A H, et al. International Journal of Thermofluids, 2021, 12, 100123.
4 Ge C A, Zheng Y P, Yu Y. Journal of Chongqing University of Technology(Natural Science),2022,36(8),29(in Chinese).
葛才安,郑燕萍,虞杨.重庆理工大学学报(自然科学),2022,36(8),29.
5 Zhang X, Li Z, Luo L, et al. Energy, 2022, 238, 121652.
6 Zhang H, Sun C. Journal of Power Sources, 2021, 493, 229445.
7 Zhong Y, Xia X, Mai W, et al. Advanced Materials Technologies, 2017, 2, 1700182.
8 Sahin M E, Blaabjerg F. Electronics, 2020, 9, 129.
9 Liu S, Wei L, Wang H. Applied Energy, 2020, 278, 115436.
10 Sharma P, Kumar V. Journal of Electronic Materials, 2020, 49, 3520.
11 Gu J D, Qiang T T, Xu W T,et al. Journal of Chongqing University of Technology(Natural Science),2021,35(6),122(in Chinese).
谷江东,强涛涛,徐卫涛,等.重庆理工大学学报(自然科学),2021,35(6),122.
12 Yang Z F, Zhang Y, Cai J X, et al. Materials Reports, 2021, 35(19), 19062(in Chinese).
杨正芳, 张悦, 蔡金霄, 等. 材料导报, 2021, 35(19), 19062.
13 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001(in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
14 Zhang J A, Tian J L, Zhang Q W,et al. Journal of Chongqing University of Technology(Natural Science),2022,36(4),111(in Chinese).
张俊安,田江玲,张庆伟,等.重庆理工大学学报(自然科学),2022,36(4),111.
15 Stoller M D, Park S, Zhu Y, et al. Nano Letters, 2008, 8(10), 3498.
16 Bosca A, Pedros J, Martinez J, et al. Journal of Applied Physics, 2015, 117(4), 4285.
17 Chen S, Sun Z, Feng L. Nanoscale, 2016, 8(6), 3207.
18 Jing C, Song X, Li K, et al. Journal of Materials Chemistry, 2020, 8, 1697.
19 Jing C, Liu X D, Li K, et al. Journal of Energy Chemistry, 2021, 52, 218.
20 Wang S, Ju P, Zhu Z, et al. RSC Advances, 2016, 6, 99640.
21 Huang Z H, Song Y, Feng D Y, et al. ACS Nano, 2018, 12, 3557.
22 Chang S K, Zainal Z, Tan K B, et al. Ceramics International, 2015, 41(1), 1.
23 Sivakumar P, Jana M, Kota M, et al. Journal of Power Sources, 2018, 402, 147.
24 Liu Y, Wen S Y, Shi W D. Materials Letters, 2018, 214, 194.
25 Jiang W, Hu F, Yan Q, et al. Inorganic Chemistry Frontiers, 2017, 4, 1642.
26 Ko T H, Devarayan K, Seo M K, et al. Scientific Reports, 2016, 6, 20313.
27 Yuan C, Li J, Hou L, et al. Advanced Functional Materials, 2012, 22, 4592.
28 Lei Y, Li J, Wang Y, et al. ACS Applied Materials & Interfaces, 2014, 6(3), 1773.
29 Li J, Xiong S, Liu Y, et al. ACS Applied Materials & Interfaces, 2013, 5(3), 981.
30 Ko T H, Lei D, Balasubramaniam S, et al. Electrochimica Acta, 2017, 247, 524.
31 Tao K, Han X, Cheng Q, et al. Chemistry—a European Journal, 2018, 24(48), 12584.
32 Ou X, Wang Y, Lei S, et al. Dalton Transactions, 2018, 47(42), 14958.
33 Zhang H, Xiao D, Li Q, et al. Journal of Energy Chemistry, 2018, 27(1), 195.
[1] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[2] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[3] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[4] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[5] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[6] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[7] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[8] 张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
[9] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[10] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[11] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[12] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[13] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[14] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[15] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed