Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21110025-6    https://doi.org/10.11896/cldb.21110025
  无机非金属及其复合材料 |
Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理
秦珩1, 李凯霖2, 戴兴健2, 周欢3, 张育新2
1 海军92896部队,辽宁 大连 116018
2 重庆大学材料科学与工程学院,重庆 400044
3 中国舰船研究设计中心,武汉 430000
Co3O4@MnSiO3@Diatomite Ternary Composites with Enhanced Pseudocapacitance Performance for Supercapacitors
QIN Heng1, Li Kailin2, DAI Xingjian2, ZHOU Huan3, ZHANG Yuxin2
1 Navy Force 92896, Dalian 116018, Liaoning, China
2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 China Ship Research and Design Center, Wuhan 430000, China
下载:  全 文 ( PDF ) ( 8734KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器是目前解决“能源短缺”与“环境污染”两大问题的重要手段之一,具有功率密度高、循环寿命长、可快速充放电、环境友好等特点。电极材料是决定超级电容器性能的关键因素。金属硅酸盐来源丰富、理论比容量高、结构可调、性质稳定,是发展低成本超级电容器的杰出候选电极材料,但面临着固有导电性较低、易团聚、循环稳定性不足等问题。因此,提出构建硅藻土基硅酸盐复合材料的思路,用于降低电极材料的生产成本、改善传统复合方式的缺陷。同时,提出利用硅藻土的多孔结构改善纳米材料的团聚问题,以提高硅酸盐电极材料的电化学性能,通过进一步负载导电性较好、氧化还原能力优异的Co3O4,构建多层次金属化合物“壳-核”结构,有助于提高界面活性、增加离子扩散通道、控制电极材料使用过程中的体积膨胀,进一步提升电化学性能。实验结果证明,Co3O4@MnSiO3@硅藻土复合材料是一种形貌结构优良、循环稳定性突出、电化学性能良好、使用寿命长及成本低廉且绿色环保的新型电极材料。改善了硅酸盐电极材料导电性不足、循环稳定性较低等缺陷,同时推动电极材料向高性能、低成本、绿色无污染方向发展。相较于现有的硅藻土基电极材料,对硅藻土SiO2的直接使用提高了对其独特形貌结构的开发利用率,改善了传统复合产品在使用过程中性能波动大的缺点,为硅藻土在超级电容器领域的高附加值利用提供了新的改进思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦珩
李凯霖
戴兴健
周欢
张育新
关键词:  超级电容器硅酸锰硅藻土四氧化三钴复合材料电化学性能    
Abstract: Supercapacitors, one of the important means of solving energy shortages and environmental pollution problems, have the characteristics of high power density, long cycle life, fast charging and discharging, and environmental friendliness. Owing to many factors, the electrode material is the key to determining the performance of supercapacitors. Silicates are excellent candidate electrode materials for developing low-cost supercapacitors because of their abundant sources, high theoretical specific capacity, adjustable structure, and stable properties. However, their low inherent conductivity, easy agglomeration, and insufficient cycle stability are still disadvantages as supercapacitor materials. Hence, in this work, the construction of diatomite-based silicate composite materials is proposed to reduce the production cost of electrode materials and improve the defects of traditional composite methods. Diatomite, which has a porous structure, was chosen to improve the agglomeration of nanomaterials and further improve the electrochemical performance of silicate electrode materials. In addition, after the MnSiO3@diatomite composite is coated with Co3O4, the core-shell structure is successfully synthesized to improve electrochemical performance by improving the electrode material’s interfacial activity, increasing the number of its ion diffusion channels, and controlling volume expansion during the electrochemical process. Results show that Co3O4@MnSiO3@diatomite composite is a new, environmentally friendly electrode material with excellent morphology and structure, outstanding cycling stability, good electrochemical performance, long service life, and low cost. The defects of low conductivity and low cycle stability of silicate electrode materials are improved, and the tendency toward high-performance, low-cost, green, and pollution-free development for electrode materials is promoted. Compared with several previous studies on diatomite-based materials, the present work promotes the development and utilization of diatomite and increases its functional application, which provides a new path for high-value utilization of diatomite in various fields.
Key words:  supercapacitor    MnSiO3    diatomite    Co3O4    composite    electrochemical performance
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金广东联合基金(U1801254)
通讯作者:  张育新,通信作者,重庆大学材料科学与工程学院教授、博士生导师。本科和硕士分别于2000年和2003年毕业于天津大学化工学院,2008年博士毕业于新加坡国立大学化学与生物分子工程系,随后继续在曾华淳教授课题组从事博士后研究直到2009年。主要的研究兴趣包括纳米材料的制备与应用;超级电容器电极材料的合成与形貌控制;光催化材料的先进设计及性能研究。在 Nat. Chem.、JACS、Adv. Mater.、ACS Nano等期刊上共发表SCI论文280余篇。   
作者简介:  秦珩,92896部队高级工程师。1998年海军工程学院内燃机动力管理专业本科毕业,2015年华中科技大学软件工程硕士毕业,目前主要从事舰船装备保障工作。
引用本文:    
秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
QIN Heng, Li Kailin, DAI Xingjian, ZHOU Huan, ZHANG Yuxin. Co3O4@MnSiO3@Diatomite Ternary Composites with Enhanced Pseudocapacitance Performance for Supercapacitors. Materials Reports, 2023, 37(11): 21110025-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110025  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21110025
1 Wang F X, Wu X W, Yuan X H, et al. Chemical Society Reviews, 2017, 46(22), 6816.
2 Tachibana M,Ohishi T, Tsukada Y, et al. Electrochemistry, 2011, 79(11), 882.
3 Song Z Y, Hou J, Hofmann H, et al.Energy, 2017,122, 601.
4 Yu Z N, Tetard L, Zhai L, et al. Energy & Environmental Science, 2015, 8(3), 702.
5 Conway B E.Electrochemical supercapacitors, Plenum Press, 2002.
6 Nandi D, Mohan V B,Bhowmick A K, et al. Journal of Materials Science, 2020, 55(15), 6375.
7 Zhang Z, Huang Z Y, Ren L, et al. Electrochimica Acta, 2014, 149, 316.
8 Wang Q S, Zhang Y F, Jiang H M, et al. Journal of Colloid and Interface Science, 2019, 534, 142.
9 Wang Q S, Zhang Y F, Jiang H M, et al. ACS Applied Energy Materials, 2018, 1(7), 3396.
10 Zhang Y F, Jiang H M, Wang Q S, et al. Chemical Engineering Journal, 2018, 352, 519.
11 Wang Q S, Zhang Y F, Jiang H M, et al. Chemical Engineering Journal, 2019, 362, 818.
12 Zhan G W,Yec C C, Zeng H C. Chemistry-A European Journal, 2015, 21(5), 1882.
13 Tian C V, Zhao S F, Lu Q S.Ceramics International, 2018, 44(14), 17007.
14 Wang L, Liu X H, Wang X, et al.Current Applied Physics, 2010, 10(6), 1422.
15 Gao Y Y, Chen S L, Cao D X, et al. Journal of Power Sources, 2010, 195(6), 1757.
16 Kandalkar S G, Gunjakar J L, Lokhande C D. Applied Surface Science, 2008, 254(17), 5540.
[1] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[2] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[5] 王昕阳, 魏世丞, 梁义, 王玉江, 王博. 微波吸收复合材料体系及其计算机辅助设计的研究进展[J]. 材料导报, 2023, 37(11): 21050233-.
[6] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[7] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[8] 顾晓然, 李顺, 唐宇, 赵孔勋, 白书欣. 超级铝热剂的发展现状[J]. 材料导报, 2023, 37(10): 21060211-8.
[9] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[10] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[11] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[12] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[13] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
[14] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[15] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed