Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 22020174-9    https://doi.org/10.11896/cldb.22020174
  无机非金属及其复合材料 |
用于能量收集的离子热电材料研究进展
肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜*
国防科技大学空天科学学院,长沙 410073
Research Progress of Ionic Thermoelectric Materials for Energy Harvesting
XIAO Ying, LIANG Gengyuan, LEI Bowen, HE Yonglyu, ZHAO Wenshu, JU Su, ZHANG Jianwei*
School of Aerospace Science, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 11342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料是一种能实现热能和电能之间相互转化的功能材料,可以对化石燃料燃烧、工业生产等过程产生的废热进行回收再利用,在小型热电发电机、太阳能电池、智能传感器等方面具有良好的应用前景。随着现代科技的发展,热电功能材料逐渐应用于小型可穿戴设备,这对热电材料的安全无毒、稳定高转换效率和柔性等提出新的要求。相较于电子型热电材料,离子型热电材料具有高Seebeck系数、柔性可拉伸性和低毒低污染等优点,因此不论在热电发电装置还是小型可穿戴设备上均具有很好的应用潜力。本文详细阐述了在热原电池、离子热电电容器等能量收集装置中的离子型热电材料的研究进展,并分析了离子热电材料在可穿戴能量转换装置应用中所面临的问题和挑战,以期为制备安全无污染、稳定高效的新型柔性可穿戴设备提供新的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖颖
梁耕源
雷博文
贺雍律
赵文姝
鞠苏
张鉴炜
关键词:  热电材料  热原电池  离子热电电容器  离子凝胶    
Abstract: Thermoelectric material is a kind of functional material, which realizes the mutual conversion between thermal energy and electrical energy. It can recycle waste heat generated in the process of fossil fuel combustion and industrial production, and shows good application prospects in small thermoelectric generators, solar cells, and smart sensors, etc. Thermoelectric materials are gradually applied to small wearable devices with the development of modern technology, which puts forward new requirements for safety, non-toxicity, stable high conversion efficiency and flexibility of thermoelectric materials. Compared with electronic thermoelectric materials, ionic thermoelectric materials have the advantages of high Seebeck coefficient, flexible stretchability, low toxicity and low pollution, and have good application potential in both thermoelectric power generation devices and small wearable devices. In this paper, the research progress of ion gel-based thermoelectric materials in energy harvesting devices such as thermogenic batteries and ionic thermoelectric capacitors are discussed. The problems and challenges faced by ionic thermoelectric materials in the application of wearable energy conversion devices are analyzed, in order to provide new directions for the preparation of safe, pollution-free, stable and efficient new flexible wearable devices.
Key words:  thermoelectric material    thermogalvanic cell    ionic thermoelectric capacitor    ion gel
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51803236)
通讯作者:  * 张鉴炜,国防科技大学空天科学学院副教授。2007年南京大学材料物理专业本科毕业,2009年国防科技大学材料科学与工程专业硕士毕业,2014年国防科技大学材料科学与工程专业博士毕业后到国防科技大学工作至今。目前主要从事碳纳米材料及其复合材料、新型能源材料等方面的研究工作。获授权国家发明专利15项,发表论文50余篇,包括Small、Carbon、Composites Science and Techno-logy、Chemical Engineering Journal等。jianwei_zhang@nudt.edu.cn   
作者简介:  肖颖,2020年6月于天津大学获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,在张鉴炜副教授的指导下进行研究。目前主要研究领域为功能复合材料。
引用本文:    
肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
XIAO Ying, LIANG Gengyuan, LEI Bowen, HE Yonglyu, ZHAO Wenshu, JU Su, ZHANG Jianwei. Research Progress of Ionic Thermoelectric Materials for Energy Harvesting. Materials Reports, 2023, 37(4): 22020174-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020174  或          http://www.mater-rep.com/CN/Y2023/V37/I4/22020174
1 Rahimi M, Straub A P, Zhang F, et al. Energy & Environmental Science, 2018, 11(2), 276.
2 Kim S I, Lee K H, Mun H A, et al. Science, 2015, 348(6230), 109.
3 Pei Y, Shi X, Lalonde A, et al. Nature, 2011, 473(7345), 66.
4 Joshi G, Lee H, Lan Y, et al. Nano Letters, 2008, 8(12), 4670.
5 Wang B, Zou H L, Liu Y, et al. Journal of Nanchang Aviation University(Natural Science Edition), 2020, 34(1), 31 (in Chinese).
王斌, 邹贺隆, 刘雨, 等. 南昌航空大学学报(自然科学版), 2020, 34(1), 31.
6 Wu G B. Preparation of N-type organic thermoelectric materials based on single-walled carbon nanotubes and organic small molecules. Master's Thesis, Qingdao University of Science and Technology, China, 2017 (in Chinese).
武光宝. 基于单壁碳纳米管与有机小分子复合制备N型有机热电材料. 硕士学位论文, 青岛科技大学, 2017.
7 Shi W, Qu S, Chen H, et al. Angewandte Chemie, 2018, 130(27), 8169.
8 Jia H, Tao X, Wang Y. Advanced Electronic Materials, 2016, 2(7), 1600136.
9 Cheng H, He X, Fan Z, et al. Advanced Energy Materials, 2019, 9(32), 1901085.
10 Fernández-Caramés T, Fraga-Lamas P. Electronics, 2018, 7(12), 405.
11 Jung M, Jeon S, Bae J. RSC Advances, 2018, 8(70), 39992.
12 An B W, Shin J H, Kim S, et al. Polymers, 2017, 9(8), 303.
13 Zhu W, Deng Y, Cao L. Nano Energy, 2017, 34, 463.
14 Safaei A, Chandra S, Shabbir M W, et al. Nature Communications, 2019, 10(1), 3498.
15 Wei T, Guan M, Yu J, et al. Joule, 2018, 2(11), 2183.
16 Zou J, Zhang M, Huang J, et al. Advanced Energy Materials, 2018, 8(10), 1702671.
17 Quickenden T I, Mua Y. Journal of Cheminformatics, 1996, 27(7), 3985.
18 Di Lecce S, Bresme F. Russian Journal of Physical Chemistry B, 2018, 122(5), 1662.
19 Yang P, Liu K, Chen Q, et al. Angewandte Chemie International Edition, 2016, 55(39), 12050.
20 Aldous L, Black J J, Elias M C, et al. Physical Chemistry Chemical Physics, 2017, 19(35), 24255.
21 Jiao N, Abraham T J, Macfarlane D R, et al. Journal of the Electrochemical Society, 2014, 161(7), D3061.
22 Laux E, Jeandupeux L, Uhl S, et al. Materials Today : Proceedings, 2019, 8(2), 672.
23 Taheri A, Macfarlane D R, Pozo-Gonzalo C, et al. Australian Journal of Chemistry, 2019, 72(9), 709.
24 Kim S L, Hsu J, Yu C. Organic Electronics, 2018, 54, 231.
25 Zhou Y, Liu Y, Buckingham M A, et al. Electrochemistry Communications, 2021, 124(5), 106938.
26 Duan J, Yu B, Liu K, et al. Nano Energy, 2019, 57(5), 473.
27 Taheri A, Macfarlane D R, Pozo-Gonzalo C, et al. Chem Sus Chem, 2018, 11(16), 2788.
28 Taheri A, Macfarlane D R, Pozo-Gonzalo C, et al. Electrochimica Acta, 2019, 297(20), 669.
29 Russo M, Warren H, Spinks G M, et al. Australian Journal of Chemistry, 2019, 72(2), 112.
30 Wu J, Black J J, Aldous L. Electrochimica Acta, 2017, 225(20), 482.
31 Han C, Qian X, Li Q, et al. Science, 2020, 368(6495), 1091.
32 Liu Y, Wang H, Sherrell P C, et al. Advanced Science, 2021, 8(13), 2100669.
33 Al-Zubaidi A, Ji X, Yu J. Sustainable Energy & Fuels, 2017, 1(7), 1457.
34 Chang W B, Fang H, Liu J, et al. ACS Macro Letters, 2016, 5(4), 455.
35 Wang H, Ail U, Gabrielsson R, et al. Advanced Energy Materials, 2015, 5(11), 1500044.
36 Ail U, Jafari M J, Wang H, et al. Advanced Functional Materials, 2016, 26(34), 6288.
37 Kim S L, Lin H T, Yu C. Advanced Energy Materials, 2016, 6(18), 1600546.
38 Akbar Z A, Jeon J, Jang S. Energy & Environmental Science, 2020, 13(9), 2915.
39 Chang W B, Evans C M, Popere B C, et al. ACS Macro Letters, 2016, 5(1), 94.
40 Zhao D, Wang H, Khan Z U, et al. Energy & Environmental Science, 2016, 9(4), 1450.
41 Jiao F, Naderi A, Zhao D, et al. Journal of Materials Chemistry A, 2017, 5(32), 16883.
42 Li T, Zhang X, Lacey S D, et al. Nature Material, 2019, 18(6), 608.
43 Lee Y Y, Kang H Y, Gwon S H, et al. Advanced Materials, 2016, 28(8), 1636.
44 Han L, Liu K, Wang M, et al. Advanced Functional Materials, 2018, 28(3), 1704195.
45 Abraham T J, Macfarlane D R, Pringle J M. Energy & Environmental Science, 2013, 6(9), 2639.
46 Zhao D, Martinelli A, Willfahrt A, et al. Nature Communications, 2019, 10(1), 1093.
47 Fang Y, Cheng H, He H, et al. Advanced Functional Materials, 2020, 30(51), 2004699.
48 Xu J, Wang H, Du X, et al. ACS Applied Material & Interfaces, 2021, 13(17), 20427.
49 Guyomard-Lack A, Abusleme J, Soudan P, et al. Advanced Energy Materials, 2014, 4(8), 1301570.
50 Li Y, Guo C, Yue L, et al. Rare Metals, 2018, 37(6), 504.
51 Zhao S, Yuan Y, Yu Q, et al. Angewandte Chemie International Edition, 2019, 58(42), 14979.
52 Sun K, Wang Z, Xin J, et al. Macromolecular Materials and Engineering, 2020, 305(3), 1900709.
53 Jiang D, Murugadoss V, Wang Y, et al. Polymer Reviews, 2019, 59(2), 280.
54 He X, Cheng H, Yue S, et al. Journal of Materials Chemistry. A, Materials for Energy and Sustainabilit, 2020, 8(21), 10813.
55 Salazar P F, Stephens S T, Kazim A H, et al. Journal of Materials Chemistry A, 2014, 2(48), 20676.
56 Chi C, An M, Qi X, et al. Nature Communications, 2022, 13(1), 221.
57 Wang Y, Jiang D, Zhang L, et al. Nanotechnology, 2019, 31(2), 25704.
58 Xiao Q, Yue Y, Ren S J. Journal of Functional Polymers, 2019, 32(1), 28 (in Chinese).
肖琴, 岳勇, 任世杰. 功能高分子学报, 2019, 32(1), 28.
59 Sajid I H, Aslfattahi N, Mohd Sabri M F, et al. Electrochimica Acta, 2019, 320(10), 134575.
60 Kim K M, Poliquit B Z, Lee Y, et al. Electrochimica Acta, 2014, 120, 159.
61 Wu X, Liu Y, Yang Q, et al. Ionics, 2017, 23(9), 2319.
62 Sajid I H, Sabri M F M, Said S M, et al. Energy Conversion and Management, 2019, 198(10), 111813.
63 Andrzejewska E, Marcinkowska A, Zgrzeba A. Polimery, 2017, 62(5), 344.
64 Liu X, Wen Z, Wu D, et al. Journal of Materials Chemistry A, 2014, 2(30), 11569.
65 Cheng H, Ouyang J. Advanced Energy Materials, 2020, 10(37), 2001633.
66 Guan X, Cheng H, Ouyang J. Journal of materials chemistry. A, Materials for Energy and Sustainability, 2018, 6(40), 19347.
67 Malik Y T, Akbar Z A, Seo J Y, et al. Advanced Energy Materials, 2022, 12(6), 2103070.
[1] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[2] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[3] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[4] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[5] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[6] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[7] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[8] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[9] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[10] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[11] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[12] 冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed