First-principles Calculation of Type-Ⅱ C2N/ZnO Heterojunction as a Water Splitting Photocatalyst
CHEN Jingliang1, LUAN Lijun1, ZHANG Ru1, ZHANG Yan1, YANG Yun2, LIU Jian3, TIAN Ye4, WEI Xing1, FAN Jibin1, DUAN Li1
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China 2 School of Information Engineering, Chang'an University, Xi'an 710064, China 3 School of Physics, Shandong University, Jinan 250100, China 4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract: The novel 2D van der Waals (vdW) heterojunction is constructed based on C2N and ZnO monolayers. In this work, we investigate the photocatalytic application of C2N/ZnO heterojunction systematically by conducting density functional theory calculations with first-principles. The results clear that the C2N/ZnO heterojunction is a direct band gap semiconductor with 1.68 eV band gap, and its type-II band alignment can facilitate the separation of photoexcited electrons and holes on different layers. From the Mulliken population analysis, 0.53 electrons from the C2N layer are transferred to the ZnO layer, forming a formidable built-in electric field Eint that curbs the recombination of photoexcited electron-hole pairs at the interface. Additionally, the band edge positions of the C2N/ZnO heterojunction straddle the water redox potential at pH=2 to 7, and the pH range of photocatalytic water decomposition increases under the tensile strain. Especially, the high carrier mobility and outstanding light absorption characteristic are retained in the C2N/ZnO heterojunction, and the solar-to-hydrogen (STH) conversion efficiency is as high as 24.6%. So the C2N/ZnO heterojunction is a prospective water splitting photocatalyst.
1 Fujishima A, Honda K. Nature, 1972, 238, 37. 2 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38, 253. 3 Singh A K, Mathew K, Zhuang H L, et al. The Journal of Physical Chemistry Letters, 2015, 6, 1087. 4 Fan Y, Ma X, Liu X, et al. The Journal of Physical Chemistry C, 2018, 122, 27803. 5 Zhou H, Cai W, Li J, et al. Physical Chemistry Chemical Physics, 2020, 22, 1485. 6 Meng R, Sun X, Yang D, et al. Applied Materials Today, 2018, 13, 276. 7 Jang J S, Kim H G, Lee J S. Catalysis Today, 2012, 185, 270. 8 Geim A K, Novoselov K S. Nature Materials, 2007, 6, 183. 9 Novoselov K S, Mishchenko A, Carvalho A, et al. Science, 2016, 353, aac9439. 10 Di J, Xia J, Li H, et al. Nano Energy, 2017, 35, 79. 11 Wang G, Zhang L, Li Y, et al. Journal of Physics D: Applied Physics, 2020, 53, 015104. 12 Shu H, Zhao M, Sun M. ACS Applied Nano Materials, 2019, 2, 6482. 13 Wang H, Zhang L, Chen Z, et al. Chemical Society Reviews, 2014, 43, 5234. 14 Luo X, Wang G, Huang Y, et al. Physical Chemistry Chemical Physics, 2017, 19, 28216. 15 Wu Z, Neaton J B, Grossman J C. Nano Letters, 2009, 9, 2418. 16 Bai Y, Zhang Q, Xu N, et al. The Journal of Physical Chemistry C, 2018, 122, 15892. 17 Cui Z, Ren K, Zhao Y, et al. Applied Surface Science, 2019, 492, 513. 18 Ren K, Sun M, Luo Y, et al. Applied Surface Science, 2019, 476, 70. 19 Yang Q, Tan C J, Meng R S, et al. IEEE Electron Device Letters, 2017, 38, 145. 20 Zhang X, Chen A, Zhang Z, et al. Nanoscale Advances, 2019, 1, 154. 21 Wang Y, Liu T, Tian W, et al. RSC Advances, 2020, 10, 41127. 22 Liu Y L, Shi Y, Yin H, et al. Applied Physics Letters, 2020, 117, 063901. 23 Mahmood J, Lee E K, Jung M, et al. Nature Communications, 2015, 6, 6486. 24 Xu B, Xiang H, Wei Q, et al. Physical Chemistry Chemical Physics, 2015, 17, 15115. 25 Mahmood J, Jung S M, Kim S J, et al. Chemistry of Materials, 2015, 27, 4860. 26 Mahmood J, Li F, Jung S M, et al. Nature Nanotechnology, 2017, 12, 441. 27 Wang H, Li X, Yang J. ChemPhysChem, 2016, 17, 2100. 28 Guan Z, Lian C S, Hu S, et al. The Journal of Physical Chemistry C, 2017, 121, 3654. 29 Weirum G, Barcaro G, Fortunelli A, et al. The Journal of Physical Chemistry C, 2010, 114, 15432. 30 Gonzalez-Valls I, Lira-Cantu M. Energy & Environmental Science, 2009, 2, 19. 31 ?zgür ü, Alivov Y I, Liu C, et al. Journal of Applied Physics, 2005, 98, 41301. 32 Pan H, Yi J B, Shen L, et al. Physical Review Letters, 2007, 99, 127201. 33 Xu T, Zhang L, Cheng H, et al. Applied Catalysis B: Environmental, 2011, 101, 382. 34 Hernandez S, Cauda V, Chiodoni A, et al. ACS Applied Materials & Interfaces, 2014, 6, 12153. 35 Song J, Zheng H, Liu M, et al. Physical Chemistry Chemical Physics, 2021, 23, 3963. 36 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865. 37 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220, 567. 38 Grimme S. Journal of Computational Chemistry, 2006, 27, 1787. 39 Tkatchenko A, Scheffler M. Physical Review Letters, 2009, 102, 73005. 40 Heyd J, Scuseria G E, Ernzerhof M. The Journal of Chemical Physics, 2003, 118, 8207. 41 Ashwin Kishore M R, Larsson K, Ravindran P. ACS Omega, 2020, 5, 23762. 42 Gao X, Shen Y, Ma Y, et al. Journal of Materials Chemistry C, 2019, 7, 4791. 43 Hu J, Duan W, He H, et al. Journal of Materials Chemistry C, 2019, 7, 7798. 44 Ren K, Yu J, Tang W. Journal of Applied Physics, 2019, 126, 65701. 45 Zhang Z, Xie Z, Liu J, et al. Physical Chemistry Chemical Physics, 2020, 22, 5873. 46 Wang S, Ren C, Tian H, et al. Physical Chemistry Chemical Physics, 2018, 20, 13394. 47 Zhang Z, Huang B, Qian Q, et al. APL Materials, 2020, 8, 41114. 48 Nunez J, Fresno F, Platero-Prats A E, et al. ACS Applied Materials & Interfaces, 2016, 8, 23729. 49 Dante R C, Martín-Ramos P, Chamorro-Posada P, et al. Materials Chemistry and Physics, 2019, 221, 397. 50 Zhang R, Zhang Y, Wei X, et al. Applied Surface Science, 2020, 528, 146782. 51 Zhang Z, Zhang Y, Xie Z, et al. Physical Chemistry Chemical Physics, 2019, 21, 5627. 52 Xia C, Du J, Xiong W, et al. Journal of Materials Chemistry A, 2017, 5, 13400. 53 Ren K, Luo Y, Yu J, et al. Chemical Physics, 2020, 528, 110539. 54 Zhang X, Zhou Y Z, Wu D Y, et al. Journal of Materials Chemistry A, 2018, 6, 9057. 55 Christoforidis K C, Fornasiero P. ChemCatChem, 2017, 9, 1523. 56 Wang B J, Li X H, Cai X L, et al. The Journal of Physical Chemistry C, 2018, 122, 7075. 57 Cai Y, Liu Y, Xie Y, et al. APL Materials, 2020, 8, 21107. 58 Kumar R, Das D, Singh A K. Journal of Catalysis, 2018, 359, 143. 59 Hu F, Tao L, Ye H, et al. Journal of Materials Chemistry C, 2019, 7, 7104. 60 Xiao J, Long M, Zhang X, et al. Scientific Reports, 2015, 5, 9961. 61 He Y, Zhang M, Shi J J, et al. The Journal of Physical Chemistry C, 2019, 123, 12781. 62 Wang G, Li D, Sun Q, et al. Nanomaterials, 2018, 8, 374. 63 Fu C F, Sun J, Luo Q, et al. Nano Letters, 2018, 18, 6312. 64 Fan Y, Wang J, Zhao M. Nanoscale, 2019, 11, 14836.