Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21110258-8    https://doi.org/10.11896/cldb.21110258
  无机非金属及其复合材料 |
Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究
陈晶亮1, 栾丽君1, 张茹1, 张研1, 杨云2, 刘剑3, 田野4, 魏星1, 樊继斌1, 段理1
1 长安大学材料科学与工程学院,西安 710064
2 长安大学信息工程学院,西安 710064
3 山东大学物理学院,济南 250100
4 中国科学院物理研究所, 北京 100190
First-principles Calculation of Type-Ⅱ C2N/ZnO Heterojunction as a Water Splitting Photocatalyst
CHEN Jingliang1, LUAN Lijun1, ZHANG Ru1, ZHANG Yan1, YANG Yun2, LIU Jian3, TIAN Ye4, WEI Xing1, FAN Jibin1, DUAN Li1
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
2 School of Information Engineering, Chang'an University, Xi'an 710064, China
3 School of Physics, Shandong University, Jinan 250100, China
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
下载:  全 文 ( PDF ) ( 8267KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于单层C2N和ZnO,构建了一种新型2D范德华(vdW)异质结。在第一性原理下进行密度泛函理论计算,系统地研究了C2N/ZnO异质结的光催化应用。结果表明,C2N/ZnO异质结具有1.68 eV的直接带隙,其Ⅱ型带对准可以促使光生电子和空穴分离在不同层上。由Mulliken电荷布局分析可知,C2N层有0.53个电子转移到ZnO层,在异质结界面处形成了一个较强的内建电场Eint,抑制了光生电子空穴对的复合。此外,C2N/ZnO异质结的带边位置跨过了pH=2~7时的水氧化还原电位,同时拉伸应变可以增大其光催化水分解pH范围。特别地,C2N/ZnO异质结保留了高载流子迁移率和优异的光吸收性能,太阳能-氢能(STH)转换效率可达到24.6%。因此,C2N/ZnO异质结是一种具有应用前景的水分解光催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晶亮
栾丽君
张茹
张研
杨云
刘剑
田野
魏星
樊继斌
段理
关键词:  C2N/ZnO异质结  水分解  第一性原理  光催化    
Abstract: The novel 2D van der Waals (vdW) heterojunction is constructed based on C2N and ZnO monolayers. In this work, we investigate the photocatalytic application of C2N/ZnO heterojunction systematically by conducting density functional theory calculations with first-principles. The results clear that the C2N/ZnO heterojunction is a direct band gap semiconductor with 1.68 eV band gap, and its type-II band alignment can facilitate the separation of photoexcited electrons and holes on different layers. From the Mulliken population analysis, 0.53 electrons from the C2N layer are transferred to the ZnO layer, forming a formidable built-in electric field Eint that curbs the recombination of photoexcited electron-hole pairs at the interface. Additionally, the band edge positions of the C2N/ZnO heterojunction straddle the water redox potential at pH=2 to 7, and the pH range of photocatalytic water decomposition increases under the tensile strain. Especially, the high carrier mobility and outstanding light absorption characteristic are retained in the C2N/ZnO heterojunction, and the solar-to-hydrogen (STH) conversion efficiency is as high as 24.6%. So the C2N/ZnO heterojunction is a prospective water splitting photocatalyst.
Key words:  C2N/ZnO heterojunction    water splitting    first-principles    photocatalytic
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2018YFB1600200);国家自然科学基金(51802025);陕西省自然科学基础研究计划(2019JQ-676);陕西省国际科学技术合作计划(2020KWZ-008);长安大学中央高校基本科研业务费专项资金(300102310501;300102319209)
通讯作者:  段理,通信作者,长安大学材料科学与工程学院教授、博士研究生导师。于1997—2006年本硕博连读于中国科学技术大学,于2006—2009年间在新西兰奥克兰大学、中科院上海微系统与信息技术研究所进行博士后研究,于2009年进入长安大学任教。目前从事计算材料学、电子信息传感、半导体照明、新能源材料器件与系统集成等方面的研究工作,发表SCI论文50余篇,期刊包括Advanced Materials Interfaces、CrystEngComm、Applied Surface Science等。   
作者简介:  陈晶亮,2019年6月于长安大学获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在段理教授的指导下进行研究。目前主要研究领域为计算材料学。
引用本文:    
陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
CHEN Jingliang, LUAN Lijun, ZHANG Ru, ZHANG Yan, YANG Yun, LIU Jian, TIAN Ye, WEI Xing, FAN Jibin, DUAN Li. First-principles Calculation of Type-Ⅱ C2N/ZnO Heterojunction as a Water Splitting Photocatalyst. Materials Reports, 2023, 37(11): 21110258-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110258  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21110258
1 Fujishima A, Honda K. Nature, 1972, 238, 37.
2 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38, 253.
3 Singh A K, Mathew K, Zhuang H L, et al. The Journal of Physical Chemistry Letters, 2015, 6, 1087.
4 Fan Y, Ma X, Liu X, et al. The Journal of Physical Chemistry C, 2018, 122, 27803.
5 Zhou H, Cai W, Li J, et al. Physical Chemistry Chemical Physics, 2020, 22, 1485.
6 Meng R, Sun X, Yang D, et al. Applied Materials Today, 2018, 13, 276.
7 Jang J S, Kim H G, Lee J S. Catalysis Today, 2012, 185, 270.
8 Geim A K, Novoselov K S. Nature Materials, 2007, 6, 183.
9 Novoselov K S, Mishchenko A, Carvalho A, et al. Science, 2016, 353, aac9439.
10 Di J, Xia J, Li H, et al. Nano Energy, 2017, 35, 79.
11 Wang G, Zhang L, Li Y, et al. Journal of Physics D: Applied Physics, 2020, 53, 015104.
12 Shu H, Zhao M, Sun M. ACS Applied Nano Materials, 2019, 2, 6482.
13 Wang H, Zhang L, Chen Z, et al. Chemical Society Reviews, 2014, 43, 5234.
14 Luo X, Wang G, Huang Y, et al. Physical Chemistry Chemical Physics, 2017, 19, 28216.
15 Wu Z, Neaton J B, Grossman J C. Nano Letters, 2009, 9, 2418.
16 Bai Y, Zhang Q, Xu N, et al. The Journal of Physical Chemistry C, 2018, 122, 15892.
17 Cui Z, Ren K, Zhao Y, et al. Applied Surface Science, 2019, 492, 513.
18 Ren K, Sun M, Luo Y, et al. Applied Surface Science, 2019, 476, 70.
19 Yang Q, Tan C J, Meng R S, et al. IEEE Electron Device Letters, 2017, 38, 145.
20 Zhang X, Chen A, Zhang Z, et al. Nanoscale Advances, 2019, 1, 154.
21 Wang Y, Liu T, Tian W, et al. RSC Advances, 2020, 10, 41127.
22 Liu Y L, Shi Y, Yin H, et al. Applied Physics Letters, 2020, 117, 063901.
23 Mahmood J, Lee E K, Jung M, et al. Nature Communications, 2015, 6, 6486.
24 Xu B, Xiang H, Wei Q, et al. Physical Chemistry Chemical Physics, 2015, 17, 15115.
25 Mahmood J, Jung S M, Kim S J, et al. Chemistry of Materials, 2015, 27, 4860.
26 Mahmood J, Li F, Jung S M, et al. Nature Nanotechnology, 2017, 12, 441.
27 Wang H, Li X, Yang J. ChemPhysChem, 2016, 17, 2100.
28 Guan Z, Lian C S, Hu S, et al. The Journal of Physical Chemistry C, 2017, 121, 3654.
29 Weirum G, Barcaro G, Fortunelli A, et al. The Journal of Physical Chemistry C, 2010, 114, 15432.
30 Gonzalez-Valls I, Lira-Cantu M. Energy & Environmental Science, 2009, 2, 19.
31 ?zgür ü, Alivov Y I, Liu C, et al. Journal of Applied Physics, 2005, 98, 41301.
32 Pan H, Yi J B, Shen L, et al. Physical Review Letters, 2007, 99, 127201.
33 Xu T, Zhang L, Cheng H, et al. Applied Catalysis B: Environmental, 2011, 101, 382.
34 Hernandez S, Cauda V, Chiodoni A, et al. ACS Applied Materials & Interfaces, 2014, 6, 12153.
35 Song J, Zheng H, Liu M, et al. Physical Chemistry Chemical Physics, 2021, 23, 3963.
36 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77, 3865.
37 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220, 567.
38 Grimme S. Journal of Computational Chemistry, 2006, 27, 1787.
39 Tkatchenko A, Scheffler M. Physical Review Letters, 2009, 102, 73005.
40 Heyd J, Scuseria G E, Ernzerhof M. The Journal of Chemical Physics, 2003, 118, 8207.
41 Ashwin Kishore M R, Larsson K, Ravindran P. ACS Omega, 2020, 5, 23762.
42 Gao X, Shen Y, Ma Y, et al. Journal of Materials Chemistry C, 2019, 7, 4791.
43 Hu J, Duan W, He H, et al. Journal of Materials Chemistry C, 2019, 7, 7798.
44 Ren K, Yu J, Tang W. Journal of Applied Physics, 2019, 126, 65701.
45 Zhang Z, Xie Z, Liu J, et al. Physical Chemistry Chemical Physics, 2020, 22, 5873.
46 Wang S, Ren C, Tian H, et al. Physical Chemistry Chemical Physics, 2018, 20, 13394.
47 Zhang Z, Huang B, Qian Q, et al. APL Materials, 2020, 8, 41114.
48 Nunez J, Fresno F, Platero-Prats A E, et al. ACS Applied Materials & Interfaces, 2016, 8, 23729.
49 Dante R C, Martín-Ramos P, Chamorro-Posada P, et al. Materials Chemistry and Physics, 2019, 221, 397.
50 Zhang R, Zhang Y, Wei X, et al. Applied Surface Science, 2020, 528, 146782.
51 Zhang Z, Zhang Y, Xie Z, et al. Physical Chemistry Chemical Physics, 2019, 21, 5627.
52 Xia C, Du J, Xiong W, et al. Journal of Materials Chemistry A, 2017, 5, 13400.
53 Ren K, Luo Y, Yu J, et al. Chemical Physics, 2020, 528, 110539.
54 Zhang X, Zhou Y Z, Wu D Y, et al. Journal of Materials Chemistry A, 2018, 6, 9057.
55 Christoforidis K C, Fornasiero P. ChemCatChem, 2017, 9, 1523.
56 Wang B J, Li X H, Cai X L, et al. The Journal of Physical Chemistry C, 2018, 122, 7075.
57 Cai Y, Liu Y, Xie Y, et al. APL Materials, 2020, 8, 21107.
58 Kumar R, Das D, Singh A K. Journal of Catalysis, 2018, 359, 143.
59 Hu F, Tao L, Ye H, et al. Journal of Materials Chemistry C, 2019, 7, 7104.
60 Xiao J, Long M, Zhang X, et al. Scientific Reports, 2015, 5, 9961.
61 He Y, Zhang M, Shi J J, et al. The Journal of Physical Chemistry C, 2019, 123, 12781.
62 Wang G, Li D, Sun Q, et al. Nanomaterials, 2018, 8, 374.
63 Fu C F, Sun J, Luo Q, et al. Nano Letters, 2018, 18, 6312.
64 Fan Y, Wang J, Zhao M. Nanoscale, 2019, 11, 14836.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[4] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[5] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[6] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[7] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[8] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[9] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[10] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[11] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[12] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[13] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[14] 杨晓宇, 唐伯明, 曹雪娟, 黄铭轩, 郝增恒. 具有持续反应活性的g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+复合材料的光学-催化行为研究[J]. 材料导报, 2023, 37(12): 21110124-7.
[15] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed