Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21120033-10    https://doi.org/10.11896/cldb.21120033
  无机非金属及其复合材料 |
直写成型无机非金属材料及其结构/功能应用进展
金海泽1,2,3, 孔文慧1, 贾赫男1, 冯晨晨1, 李翠霞1, 贾德昌2,3
1 兰州理工大学材料科学与工程学院, 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
3 哈尔滨工业大学特种陶瓷研究所,哈尔滨 150080
Current Advances in Processing and Structure-function Applications of DIW of Inorganic Non-metallic Materials
JIN Haize1,2,3, KONG Wenhui1, JIA Henan1, FENG Chenchen1, LI Cuixia1, JIA Dechang2,3
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Material Science and Engineering School, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3 Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
下载:  全 文 ( PDF ) ( 3840KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机非金属材料因突出的力学、电学、磁学、声学、光学及热学性能而备受关注,但受制于其固有的低延展性和硬脆特性而加工困难。直写成型技术作为一种被广泛采用的3D打印技术,可利用粉体、前驱体等原料配制流变性能适宜的浆料实现复杂结构无机非金属材料零部件的成型,具有原料选材广泛、设备廉价、工艺简单等优势,能够有效提高所需产品设计—制造—测试—应用整个周期的效率,已被广泛应用于航空航天、医药、能源、建筑等领域的科研探索。基于直写成型技术在无机非金属材料零部件制备及结构/功能化应用方面的进展,概述了无机非金属材料3D打印技术的发展及直写成型的技术特征;分类介绍了直写成型在储能器件、建筑材料、组织工程、先进陶瓷等领域的应用特点及进展,并对其在相应领域的发展和挑战进行适当评述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金海泽
孔文慧
贾赫男
冯晨晨
李翠霞
贾德昌
关键词:  3D打印直写成型  无机非金属材料  结构/功能应用  进展    
Abstract: Inorganic non-metallic materials have attracted much attention due to their outstanding mechanical, electrical, magnetic, acoustic, optical and thermal properties. Nonetheless, the inherent low ductility and hard-brittle properties of inorganic non-metallic materials result in the difficulties to process. As a type of widely used 3D printing technology, direct ink writing (DIW) can fabricate complex structured inorganic non-metallic material parts by utilizing pastes with suitable rheological properties, which were prepared by powder, precursor or other raw materials. The DIW has the advantages of wide selection of raw materials, cheap equipment and simple process, which can effectively improve the efficiency of design-manufacture-test-application cycle of customized products. Therefore, DIW has been widely applied in the scientific exploration of aerospace, medicine, energy, construction, etc. This review aims to summarize the research progress of the design and manufacture of structure-function integrated inorganic non-metallic materials based on DIW. An overview of 3D printing of inorganic non-metallic materials and technological characteristics of DIW is discussed. And the respective application characteristics and progress of DIW in structure-function fields (e.g. energy storage devices, building materials, tissue engineering, advanced ceramics) are introduced. Then, a review for the development and challenges in different DIW fields is presented.
Key words:  3D printing    direct ink writing    inorganic non-metallic materials    structure/function application    current advances
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB321  
基金资助: 国家自然科学基金(52102102)
通讯作者:  金海泽,通信作者,兰州理工大学材料科学与工程学院讲师。2012年兰州理工大学无机非金属材料工程系本科毕业,2017年兰州理工大学材料学专业硕士毕业,2021年哈尔滨工业大学材料学专业博士毕业后到兰州理工大学工作至今。主要从事3D打印光催化材料的设计、结构调控及相关机理研究;基于3D打印的地质聚合物吸附剂在重金属及有机染料去除等方面的应用。在Journal of the European Ceramic Society、Materials & Design、Ceramics International、Colloids and Surfaces A、《无机材料学报》等国内外著名SCI期刊发表论文10余篇。   
作者简介:  金海泽,通信作者,兰州理工大学材料科学与工程学院讲师。2012年兰州理工大学无机非金属材料工程系本科毕业,2017年兰州理工大学材料学专业硕士毕业,2021年哈尔滨工业大学材料学专业博士毕业后到兰州理工大学工作至今。主要从事3D打印光催化材料的设计、结构调控及相关机理研究;基于3D打印的地质聚合物吸附剂在重金属及有机染料去除等方面的应用。在Journal of the European Ceramic Society、Materials & Design、Ceramics International、Colloids and Surfaces A、《无机材料学报》等国内外著名SCI期刊发表论文10余篇。
引用本文:    
金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
JIN Haize, KONG Wenhui, JIA Henan, FENG Chenchen, LI Cuixia, JIA Dechang. Current Advances in Processing and Structure-function Applications of DIW of Inorganic Non-metallic Materials. Materials Reports, 2023, 37(11): 21120033-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120033  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21120033
1 Liu Y N, Zhu J Q. Ceramics International, 2020, 46(4),4154.
2 Taveri G, Hanzel O, Sedlá?ek J, et al. Ceramics International, 2021, 47(3), 4090.
3 Sun K, Yang Z, Mu R, et al. Journal of the European Ceramic Society, 2020, 41(6),3196.
4 Kim G D, Kim Y W. Journal of the European Ceramic Society, 2021,41(7), 3980.
5 Wang K, Chen L, Xu C, et al. Journal of Materials Science & Technology, 2020, 39(4),99.
6 Liu Y N, Zhu J Q, Dai B. Ceramics International, 2020, 46(16),25738.
7 Gardner L J, Walling S A, Corkhill C L, et al. Journal of Hazardous Materials, 2021, 413,125250.
8 Alias S S, Harun Z, Ismail N F. Journal of the Australian Ceramic Society, 2019, 55(4),969.
9 Krotkevich D G, Kashkarov E B, Syrtanov M S, et al. Ceramics International, 2021,47(9),12221.
10 Vojtko M, Puchy V, Múdra E, et al. Journal of the European Ceramic Society, 2020, 40(14), 4844.
11 Sciti D, Galizia P, Reimer T, et al. Composites Part B: Engineering, 2021,216,108839.
12 Zhang Y, Yao D X, Zuo K H, et al. Journal of the European Ceramic Society, 202,41(8),4452.
13 Bai Y, He X, Wang R, et al. Journal of the European Ceramic Society, 2013, 33(13-14),2435.
14 Bao Y, Huang L J, An Q, et al. Journal of the European Ceramic Society, 2020, 40(13),4381.
15 Tesfay H D, Xu Z G, Li Z C. The International Journal of Advanced Manufacturing Technology, 2016,86(9-12),3483.
16 Park H K, Park S H, Park I S, et al. Journal of the Korean Society of Manufacturing Process Engineers, 2018, 17(1),16.
17 Abdo B M A, Anwar S, El-Tamimi A. Journal of Manufacturing Processes, 2019, 43,175.
18 Li Z C, Jiao Y, Deines T W, et al. International Journal of Machine Tools and Manufacture, 2005, 45,1402.
19 Mohankumar V, Kanthababu M, Raveendran R. Applied Mechanics & Materials, 2015, 766-767,643.
20 Thamizhvalavan P, Yuvaraj N, Arivazhagan S. Silicon, 2022, 14(3), 1093.
21 Lazar A,Kosma? T, Zava?nik J, et al. Materials, 2019, 12(7),2789.
22 Sachidhananda T G, Chandrashekhar V A. Materials Science Forum, 2021, 1019,121.
23 Abdo B, Ahmed N, El-Tamimi A M, et al. Journal of Mechanical Science and Technology, 2019, 33(4),1817.
24 Zhang J C, Tang Y J, Wu W D. Materials Reports, 2006(S2),40 (in Chinese).
张继成, 唐永建, 吴卫东. 材料导报, 2006(S2),40.
25 Tuersley I P, Jawaid A, Pashby I R. Journal of Materials Processing Technology, 1994, 42(4),377.
26 Lakhdar Y, Tuck C, Binner J, et al. Progress in Materials Science, 2021, 116,100736.
27 Hossain S K S, Pyare R, Roy P K. Ceramics International, 2020, 46(8),10871.
28 Ferrand H L. Journal of the European Ceramic Society, 2020, 41(1),24.
29 Kim D S, Lee J K. Journal of Nanoscience and Nanotechnology, 2020, 20(9),5703.
30 Teng H D, Wei Q, Wang Y L, et al. Ceramics International, 2020, 46(15),23677.
31 Feng Z, Qi J, Lu T. Journal of the European Ceramic Society, 2019, 40(4),1168.
32 Wang H, Hasegawa G, Akiyama Y, et al. Electrochimica Acta, 2019,305,197.
33 Yao Q, Zhang L, Chen H, et al. Ceramics International, 2021, 47(3),4327.
34 Wu Y, Xu K, Yin R, et al. Ceramics International, 2020, 46(16), 25236.
35 Qiao J, Wen Y. Ceramics International, 2020, 46(2),1442.
36 Yang J L, Yu J, Huang Y. Journal of the European Ceramic Society, 2011, 31(14),2569.
37 Franks G V, Tallon C, Anddré R, et al. Journal of the American Ceramic Society, 2017, 100(2), 458.
38 Zocca A, Colombo P, Gomes C M, et al. Journal of the American Ceramic Society, 2015, 98(7), 1983.
39 Chen Z W, Li Z Y, Li J J, et al. Journal of the European Ceramic Society, 2019, 39(4), 661.
40 Jin H, Yang Z, Zhong J, et al. Journal of the European Ceramic Society, 2019, 39(15), 4680.
41 Bose S, Banerjee D, Shivaram A, et al. Materials & Design, 2018, 151(5), 102.
42 Sun C, Liu S R, Shi X L, et al. Chemical Engineering Journal, 2020, 381(1),122641.
43 Maurel A, Haukka M, Macdonald E, et al. Additive Manufacturing, 2021,37,101651.
44 Lowke D, Talke D, Dressler I, et al. Cement and Concrete Research, 2020, 134,106077.
45 Xiao J, Ji G, Zhang Y, et al. Cement and Concrete Composites, 2021, 122,104115.
46 Xu C, Wu Q H, L'esperance G, et al. Materials & Design, 2018, 160, 262.
47 Hu Z P, Liu Y, Qian Z, et al. Materials Science and Engineering: A, 2021,817,141417.
48 Murray S P, Pusch K M, Polonsky A T, et al. Nature Communications, 2020, 11(1), 4975.
49 Jaidev L R, Chatterjee K. Materials & Design, 2019, 161,44.
50 Navaruckiene A, Skliutas E, Kasetaite S, et al. Polymers, 2020, 12(2),397.
51 Yang W, Li M, Xu M, et al. Materials & Design, 2021,207,109891.
52 Kiran R U, Malferrari S, Van Haver A, et al. Materials & Design, 2019, 162, 263.
53 Shuai X, Zeng Y, Li P, et al. Journal of Materials Science, 2020, 55(16), 6771.
54 Liu X Y, Zou B, Xing H Y, et al. Ceramics International, 2020, 46(1),937.
55 Gou M L, Qu X, Zhu W, et al. Nature Communications, 2014, 5,3774.
56 Chen P Y, Liu M C, Wang Z Y, et al. Advanced Materials, 2017, 29(23),1605096.
57 Huang M J, Wu H D, Huang R J, et al. Modern Technical Ceramics, 2017, 38(4),248 (in Chinese).
黄淼俊, 伍海东, 黄容基, 等. 现代技术陶瓷, 2017, 38(4),248
58 Marcus H L, Beaman J J, Barlow J W, et al. American Ceramic Society Bulletin, 1990, 69(6),1030.
59 Sachs E, Cima M, Cornie J. CIRP Annals-Manufacturing Technology, 1990, 39(1),201.
60 Sing S L, Yeong W Y, Wiria F E, et al. Rapid Prototyping Journal, 2017, 23(3),611.
61 Duan W Y, Li S, Wang G, et al. Journal of the European Ceramic Society, 2020, 40(10), 3535.
62 Dermeik B, Travitzky N. Advanced Engineering Materials, 2020, 22(9),2000256.
63 Arnesano A, Padmanabhan S K, Notarangelo A, et al. Ceramics International, 2020, 46(2),2206.
64 Liu H, Wang Q K, Chang Q B, et al. Materials Research Express, 2019, 6(7),075214.
65 Aleni A H, Kretzschmar N, Jansson A, et al. Ceramics International, 2020, 46(10),16725.
66 Calvert P D, Cesarano J. Patent, U.S.6027326, 2000.
67 Peng E, Zhang D W, Ding J. Advanced Materials, 2018, 30(47),1802404.
68 Farahani R D, Dube M, Therriault D. Advanced Materials, 2016, 28(28), 5794.
69 Jennifer A L, James E S, John S, et al. Journal of the American Ceramic Society, 2006, 89(12),3599.
70 Smay J E, Cesarano J, Lewis J A. Langmuir, 2002, 18(14),5429.
71 Conrad J C, Ferreira S R, Yoshikawa J, et al. Current Opinion in Colloid & Interface Science, 2011, 16(1), 71.
72 Sun Y H, Peng C Q, Wang X F, et al. Powder Technology, 2017, 320, 223.
73 Costakis Jr W J, Rueschhoff L M, Diaz-Cano A I, et al. Journal of the European Ceramic Society, 2016,36(14),3249.
74 Travitzky N, Bonet A, Dermeik B, et al. Advanced Engineering Mate-rials, 2014, 16(6),729.
75 Hazan Y D, Thanert M, Trunec M, et al. Journal of the European Cera-mic Society, 2012, 32(6),1187.
76 An T, Hwang K, Kim J H, et al. Ceramics International, 2018, 45(5), 6469.
77 Tang X W, Zhou H, Cai Z C, et al. ACS Nano, 2018, 12(4),3502.
78 Sun K, Wei T S, Ahn B Y, et al. Advanced Materials, 2013, 25(33), 4539.
79 Tian X C, Zhou K. Nanoscale, 2020, 12,7416.
80 Yu W, Zhou H, Li B Q, et al. Acs Applied Materials & Interfaces, 2017, 9(5),4597.
81 Wang T, Tian X C, Li L, et al. Journal of Materials Chemistry A, 2020, 8,1749.
82 Vergara L A, Colorado H A. Construction and Building Materials, 2020, 248, 118669.
83 Sajadi S M, Boul P J, Thaemlitz C, et al. Advanced Engineering Mate-rials, 2019, 21(8),1801380.
84 Gosselin C, Duballet R, Roux P, et al. Materials & Design, 2016, 100,102.
21120033-785 Moini M, Olek J, Youngblood J P, et al. Advanced Materials, 2018, 30(43),1802123.
86 Bai C Y, Franchin G, Elsayed H S, et al. Journal of Materials Research, 2017, 32(17), 3251.
87 Franchin G, Scanferla P, Zeffiro L, et al. Journal of the European Ceramic Society, 2017, 37(6),2481.
88 Dababneh A B, Ozbolat I T. Journal of Manufacturing Science & Engineering, 2014, 136(6), 11.
89 Smith I O, Liu X H, Smith L A, et al. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2009, 1(2), 226.
90 Dietmar W H,Michael S,Makarand V R. TRENDS in Biotechnology, 2004, 22(7),354.
91 Chia H N, Wu B M. Journal of Biological Engineering, 2015, 9(1), 1.
92 Sears N A, Dhavalikar P S, Seshadri D, et al. Tissue Engineering Part B Reviews, 2016, 22(4),298.
93 Li J H, Wu C T, Chu K P, et al. Materials Science and Engineering: R: Reports, 2020, 140,100543.
94 Cheng D L, Chen B X, Wu M M, et al. Sci Sin Tech, 2021(51),981(in Chinese).
程德林, 陈必秀, 吴明明, 等. 中国科学: 技术科学, 2021(51),981.
95 Wang R, Zhu P F, Yang W Y, et al. Materials & Design, 2018, 144,304.
96 Zhang H G. Research on 3D printing biphasic calcium phosphate bon.e tissue scaffold and its modification. Master's Thesis. Hangzhou Dianzi University, China, 2019 (in Chinese).
张海鸽. 3D打印双相磷酸钙骨组织支架及其改性研究. 硕士学位论文, 杭州电子科技大学, 2019.
97 Dong Y F. 3D printed osteochondral integrated repair gradient hybrid scaffold and its properties. Master's Thesis. South China University of Technology, China, 2018 (in Chinese).
董怡帆. 3D 打印骨软骨一体化修复梯度杂化支架及其性能研究. 硕士学位论文, 华南理工大学, 2018.
98 Tang D N, Hao L, Li Y, et al. Journal of Alloys and Compounds, 2019, 814,152275.
99 Pierin G, Grotta C, Colombo P, et al. Journal of the European Ceramic Society, 2016, 36(7),1589.
100 Rueschhoff L, Costakis W, Michie M, et al. International Journal of Applied Ceramic Technology, 2016, 13(5),1.
101 Zhang X Y, Huo W L, Liu J J, et al. Journal of the European Ceramic Society, 2016, 40(3),930.
102 Minas C, Carnelli D, Tervoort E, et al. Advanced Materials, 2016, 28(45), 9993.
103 Zhao Z. Direct-write 3D printing continuous SiO2 fiber reinforced SiO2/phosphate composite material and its performance research. Master's Thesis. Harbin Institute of Technology, China, 2019 (in Chinese).
赵哲. 直写式3D打印连续SiO2纤维增强SiO2/磷酸盐复合材料及其性能研究. 硕士学位论文,哈尔滨工业大学, 2019.
104 Jiang S L, Zhou Y, Yi J Q, et al. Materials Reports, 2013, 27(21) ,1(in Chinese).
姜胜林, 周莹, 易金桥, 等. 材料导报, 2013, 27(21) ,1.
105 Lewis J A.Advanced Functional Materials, 2006, 16, 2193.
106 Wang R, Yang W Y, Zhu P F, et al. Journal of the American Ceramic Society, 2018, 101(5),1967.
107 Arango M A, Kwakyeackah D, Agarwal S, et al. ACS Sustainable Che-mistry & Engineering, 2017, 5(11),10421.
108 Ahn J, Lee S, Kim J H, et al. Nanoscale Advance, 2020, 2,5600.
109 Xu X, Xiao S N, Willy H J, et al. Applied Catalysis B: Environmental, 2020, 262,118307.
[1] 齐亚兵, 唐承卓, 贾宏磊. 工业烟气湿法脱硫技术的发展现状及研究新进展[J]. 材料导报, 2022, 36(Z1): 21110260-9.
[2] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[3] 李年华, 刘吉平, 韩佳, 刘晓波, 李雪利, 宋昆朋, 杨威威, 方祝青. 金属氘化物的制备与应用研究进展[J]. 材料导报, 2021, 35(21): 21211-21220.
[4] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[5] 张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed