Current Advances in Processing and Structure-function Applications of DIW of Inorganic Non-metallic Materials
JIN Haize1,2,3, KONG Wenhui1, JIA Henan1, FENG Chenchen1, LI Cuixia1, JIA Dechang2,3
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Material Science and Engineering School, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3 Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150080, China
Abstract: Inorganic non-metallic materials have attracted much attention due to their outstanding mechanical, electrical, magnetic, acoustic, optical and thermal properties. Nonetheless, the inherent low ductility and hard-brittle properties of inorganic non-metallic materials result in the difficulties to process. As a type of widely used 3D printing technology, direct ink writing (DIW) can fabricate complex structured inorganic non-metallic material parts by utilizing pastes with suitable rheological properties, which were prepared by powder, precursor or other raw materials. The DIW has the advantages of wide selection of raw materials, cheap equipment and simple process, which can effectively improve the efficiency of design-manufacture-test-application cycle of customized products. Therefore, DIW has been widely applied in the scientific exploration of aerospace, medicine, energy, construction, etc. This review aims to summarize the research progress of the design and manufacture of structure-function integrated inorganic non-metallic materials based on DIW. An overview of 3D printing of inorganic non-metallic materials and technological characteristics of DIW is discussed. And the respective application characteristics and progress of DIW in structure-function fields (e.g. energy storage devices, building materials, tissue engineering, advanced ceramics) are introduced. Then, a review for the development and challenges in different DIW fields is presented.
通讯作者:
金海泽,通信作者,兰州理工大学材料科学与工程学院讲师。2012年兰州理工大学无机非金属材料工程系本科毕业,2017年兰州理工大学材料学专业硕士毕业,2021年哈尔滨工业大学材料学专业博士毕业后到兰州理工大学工作至今。主要从事3D打印光催化材料的设计、结构调控及相关机理研究;基于3D打印的地质聚合物吸附剂在重金属及有机染料去除等方面的应用。在Journal of the European Ceramic Society、Materials & Design、Ceramics International、Colloids and Surfaces A、《无机材料学报》等国内外著名SCI期刊发表论文10余篇。
作者简介: 金海泽,通信作者,兰州理工大学材料科学与工程学院讲师。2012年兰州理工大学无机非金属材料工程系本科毕业,2017年兰州理工大学材料学专业硕士毕业,2021年哈尔滨工业大学材料学专业博士毕业后到兰州理工大学工作至今。主要从事3D打印光催化材料的设计、结构调控及相关机理研究;基于3D打印的地质聚合物吸附剂在重金属及有机染料去除等方面的应用。在Journal of the European Ceramic Society、Materials & Design、Ceramics International、Colloids and Surfaces A、《无机材料学报》等国内外著名SCI期刊发表论文10余篇。
引用本文:
金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
JIN Haize, KONG Wenhui, JIA Henan, FENG Chenchen, LI Cuixia, JIA Dechang. Current Advances in Processing and Structure-function Applications of DIW of Inorganic Non-metallic Materials. Materials Reports, 2023, 37(11): 21120033-10.
1 Liu Y N, Zhu J Q. Ceramics International, 2020, 46(4),4154. 2 Taveri G, Hanzel O, Sedlá?ek J, et al. Ceramics International, 2021, 47(3), 4090. 3 Sun K, Yang Z, Mu R, et al. Journal of the European Ceramic Society, 2020, 41(6),3196. 4 Kim G D, Kim Y W. Journal of the European Ceramic Society, 2021,41(7), 3980. 5 Wang K, Chen L, Xu C, et al. Journal of Materials Science & Technology, 2020, 39(4),99. 6 Liu Y N, Zhu J Q, Dai B. Ceramics International, 2020, 46(16),25738. 7 Gardner L J, Walling S A, Corkhill C L, et al. Journal of Hazardous Materials, 2021, 413,125250. 8 Alias S S, Harun Z, Ismail N F. Journal of the Australian Ceramic Society, 2019, 55(4),969. 9 Krotkevich D G, Kashkarov E B, Syrtanov M S, et al. Ceramics International, 2021,47(9),12221. 10 Vojtko M, Puchy V, Múdra E, et al. Journal of the European Ceramic Society, 2020, 40(14), 4844. 11 Sciti D, Galizia P, Reimer T, et al. Composites Part B: Engineering, 2021,216,108839. 12 Zhang Y, Yao D X, Zuo K H, et al. Journal of the European Ceramic Society, 202,41(8),4452. 13 Bai Y, He X, Wang R, et al. Journal of the European Ceramic Society, 2013, 33(13-14),2435. 14 Bao Y, Huang L J, An Q, et al. Journal of the European Ceramic Society, 2020, 40(13),4381. 15 Tesfay H D, Xu Z G, Li Z C. The International Journal of Advanced Manufacturing Technology, 2016,86(9-12),3483. 16 Park H K, Park S H, Park I S, et al. Journal of the Korean Society of Manufacturing Process Engineers, 2018, 17(1),16. 17 Abdo B M A, Anwar S, El-Tamimi A. Journal of Manufacturing Processes, 2019, 43,175. 18 Li Z C, Jiao Y, Deines T W, et al. International Journal of Machine Tools and Manufacture, 2005, 45,1402. 19 Mohankumar V, Kanthababu M, Raveendran R. Applied Mechanics & Materials, 2015, 766-767,643. 20 Thamizhvalavan P, Yuvaraj N, Arivazhagan S. Silicon, 2022, 14(3), 1093. 21 Lazar A,Kosma? T, Zava?nik J, et al. Materials, 2019, 12(7),2789. 22 Sachidhananda T G, Chandrashekhar V A. Materials Science Forum, 2021, 1019,121. 23 Abdo B, Ahmed N, El-Tamimi A M, et al. Journal of Mechanical Science and Technology, 2019, 33(4),1817. 24 Zhang J C, Tang Y J, Wu W D. Materials Reports, 2006(S2),40 (in Chinese). 张继成, 唐永建, 吴卫东. 材料导报, 2006(S2),40. 25 Tuersley I P, Jawaid A, Pashby I R. Journal of Materials Processing Technology, 1994, 42(4),377. 26 Lakhdar Y, Tuck C, Binner J, et al. Progress in Materials Science, 2021, 116,100736. 27 Hossain S K S, Pyare R, Roy P K. Ceramics International, 2020, 46(8),10871. 28 Ferrand H L. Journal of the European Ceramic Society, 2020, 41(1),24. 29 Kim D S, Lee J K. Journal of Nanoscience and Nanotechnology, 2020, 20(9),5703. 30 Teng H D, Wei Q, Wang Y L, et al. Ceramics International, 2020, 46(15),23677. 31 Feng Z, Qi J, Lu T. Journal of the European Ceramic Society, 2019, 40(4),1168. 32 Wang H, Hasegawa G, Akiyama Y, et al. Electrochimica Acta, 2019,305,197. 33 Yao Q, Zhang L, Chen H, et al. Ceramics International, 2021, 47(3),4327. 34 Wu Y, Xu K, Yin R, et al. Ceramics International, 2020, 46(16), 25236. 35 Qiao J, Wen Y. Ceramics International, 2020, 46(2),1442. 36 Yang J L, Yu J, Huang Y. Journal of the European Ceramic Society, 2011, 31(14),2569. 37 Franks G V, Tallon C, Anddré R, et al. Journal of the American Ceramic Society, 2017, 100(2), 458. 38 Zocca A, Colombo P, Gomes C M, et al. Journal of the American Ceramic Society, 2015, 98(7), 1983. 39 Chen Z W, Li Z Y, Li J J, et al. Journal of the European Ceramic Society, 2019, 39(4), 661. 40 Jin H, Yang Z, Zhong J, et al. Journal of the European Ceramic Society, 2019, 39(15), 4680. 41 Bose S, Banerjee D, Shivaram A, et al. Materials & Design, 2018, 151(5), 102. 42 Sun C, Liu S R, Shi X L, et al. Chemical Engineering Journal, 2020, 381(1),122641. 43 Maurel A, Haukka M, Macdonald E, et al. Additive Manufacturing, 2021,37,101651. 44 Lowke D, Talke D, Dressler I, et al. Cement and Concrete Research, 2020, 134,106077. 45 Xiao J, Ji G, Zhang Y, et al. Cement and Concrete Composites, 2021, 122,104115. 46 Xu C, Wu Q H, L'esperance G, et al. Materials & Design, 2018, 160, 262. 47 Hu Z P, Liu Y, Qian Z, et al. Materials Science and Engineering: A, 2021,817,141417. 48 Murray S P, Pusch K M, Polonsky A T, et al. Nature Communications, 2020, 11(1), 4975. 49 Jaidev L R, Chatterjee K. Materials & Design, 2019, 161,44. 50 Navaruckiene A, Skliutas E, Kasetaite S, et al. Polymers, 2020, 12(2),397. 51 Yang W, Li M, Xu M, et al. Materials & Design, 2021,207,109891. 52 Kiran R U, Malferrari S, Van Haver A, et al. Materials & Design, 2019, 162, 263. 53 Shuai X, Zeng Y, Li P, et al. Journal of Materials Science, 2020, 55(16), 6771. 54 Liu X Y, Zou B, Xing H Y, et al. Ceramics International, 2020, 46(1),937. 55 Gou M L, Qu X, Zhu W, et al. Nature Communications, 2014, 5,3774. 56 Chen P Y, Liu M C, Wang Z Y, et al. Advanced Materials, 2017, 29(23),1605096. 57 Huang M J, Wu H D, Huang R J, et al. Modern Technical Ceramics, 2017, 38(4),248 (in Chinese). 黄淼俊, 伍海东, 黄容基, 等. 现代技术陶瓷, 2017, 38(4),248 58 Marcus H L, Beaman J J, Barlow J W, et al. American Ceramic Society Bulletin, 1990, 69(6),1030. 59 Sachs E, Cima M, Cornie J. CIRP Annals-Manufacturing Technology, 1990, 39(1),201. 60 Sing S L, Yeong W Y, Wiria F E, et al. Rapid Prototyping Journal, 2017, 23(3),611. 61 Duan W Y, Li S, Wang G, et al. Journal of the European Ceramic Society, 2020, 40(10), 3535. 62 Dermeik B, Travitzky N. Advanced Engineering Materials, 2020, 22(9),2000256. 63 Arnesano A, Padmanabhan S K, Notarangelo A, et al. Ceramics International, 2020, 46(2),2206. 64 Liu H, Wang Q K, Chang Q B, et al. Materials Research Express, 2019, 6(7),075214. 65 Aleni A H, Kretzschmar N, Jansson A, et al. Ceramics International, 2020, 46(10),16725. 66 Calvert P D, Cesarano J. Patent, U.S.6027326, 2000. 67 Peng E, Zhang D W, Ding J. Advanced Materials, 2018, 30(47),1802404. 68 Farahani R D, Dube M, Therriault D. Advanced Materials, 2016, 28(28), 5794. 69 Jennifer A L, James E S, John S, et al. Journal of the American Ceramic Society, 2006, 89(12),3599. 70 Smay J E, Cesarano J, Lewis J A. Langmuir, 2002, 18(14),5429. 71 Conrad J C, Ferreira S R, Yoshikawa J, et al. Current Opinion in Colloid & Interface Science, 2011, 16(1), 71. 72 Sun Y H, Peng C Q, Wang X F, et al. Powder Technology, 2017, 320, 223. 73 Costakis Jr W J, Rueschhoff L M, Diaz-Cano A I, et al. Journal of the European Ceramic Society, 2016,36(14),3249. 74 Travitzky N, Bonet A, Dermeik B, et al. Advanced Engineering Mate-rials, 2014, 16(6),729. 75 Hazan Y D, Thanert M, Trunec M, et al. Journal of the European Cera-mic Society, 2012, 32(6),1187. 76 An T, Hwang K, Kim J H, et al. Ceramics International, 2018, 45(5), 6469. 77 Tang X W, Zhou H, Cai Z C, et al. ACS Nano, 2018, 12(4),3502. 78 Sun K, Wei T S, Ahn B Y, et al. Advanced Materials, 2013, 25(33), 4539. 79 Tian X C, Zhou K. Nanoscale, 2020, 12,7416. 80 Yu W, Zhou H, Li B Q, et al. Acs Applied Materials & Interfaces, 2017, 9(5),4597. 81 Wang T, Tian X C, Li L, et al. Journal of Materials Chemistry A, 2020, 8,1749. 82 Vergara L A, Colorado H A. Construction and Building Materials, 2020, 248, 118669. 83 Sajadi S M, Boul P J, Thaemlitz C, et al. Advanced Engineering Mate-rials, 2019, 21(8),1801380. 84 Gosselin C, Duballet R, Roux P, et al. Materials & Design, 2016, 100,102. 21120033-785 Moini M, Olek J, Youngblood J P, et al. Advanced Materials, 2018, 30(43),1802123. 86 Bai C Y, Franchin G, Elsayed H S, et al. Journal of Materials Research, 2017, 32(17), 3251. 87 Franchin G, Scanferla P, Zeffiro L, et al. Journal of the European Ceramic Society, 2017, 37(6),2481. 88 Dababneh A B, Ozbolat I T. Journal of Manufacturing Science & Engineering, 2014, 136(6), 11. 89 Smith I O, Liu X H, Smith L A, et al. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2009, 1(2), 226. 90 Dietmar W H,Michael S,Makarand V R. TRENDS in Biotechnology, 2004, 22(7),354. 91 Chia H N, Wu B M. Journal of Biological Engineering, 2015, 9(1), 1. 92 Sears N A, Dhavalikar P S, Seshadri D, et al. Tissue Engineering Part B Reviews, 2016, 22(4),298. 93 Li J H, Wu C T, Chu K P, et al. Materials Science and Engineering: R: Reports, 2020, 140,100543. 94 Cheng D L, Chen B X, Wu M M, et al. Sci Sin Tech, 2021(51),981(in Chinese). 程德林, 陈必秀, 吴明明, 等. 中国科学: 技术科学, 2021(51),981. 95 Wang R, Zhu P F, Yang W Y, et al. Materials & Design, 2018, 144,304. 96 Zhang H G. Research on 3D printing biphasic calcium phosphate bon.e tissue scaffold and its modification. Master's Thesis. Hangzhou Dianzi University, China, 2019 (in Chinese). 张海鸽. 3D打印双相磷酸钙骨组织支架及其改性研究. 硕士学位论文, 杭州电子科技大学, 2019. 97 Dong Y F. 3D printed osteochondral integrated repair gradient hybrid scaffold and its properties. Master's Thesis. South China University of Technology, China, 2018 (in Chinese). 董怡帆. 3D 打印骨软骨一体化修复梯度杂化支架及其性能研究. 硕士学位论文, 华南理工大学, 2018. 98 Tang D N, Hao L, Li Y, et al. Journal of Alloys and Compounds, 2019, 814,152275. 99 Pierin G, Grotta C, Colombo P, et al. Journal of the European Ceramic Society, 2016, 36(7),1589. 100 Rueschhoff L, Costakis W, Michie M, et al. International Journal of Applied Ceramic Technology, 2016, 13(5),1. 101 Zhang X Y, Huo W L, Liu J J, et al. Journal of the European Ceramic Society, 2016, 40(3),930. 102 Minas C, Carnelli D, Tervoort E, et al. Advanced Materials, 2016, 28(45), 9993. 103 Zhao Z. Direct-write 3D printing continuous SiO2 fiber reinforced SiO2/phosphate composite material and its performance research. Master's Thesis. Harbin Institute of Technology, China, 2019 (in Chinese). 赵哲. 直写式3D打印连续SiO2纤维增强SiO2/磷酸盐复合材料及其性能研究. 硕士学位论文,哈尔滨工业大学, 2019. 104 Jiang S L, Zhou Y, Yi J Q, et al. Materials Reports, 2013, 27(21) ,1(in Chinese). 姜胜林, 周莹, 易金桥, 等. 材料导报, 2013, 27(21) ,1. 105 Lewis J A.Advanced Functional Materials, 2006, 16, 2193. 106 Wang R, Yang W Y, Zhu P F, et al. Journal of the American Ceramic Society, 2018, 101(5),1967. 107 Arango M A, Kwakyeackah D, Agarwal S, et al. ACS Sustainable Che-mistry & Engineering, 2017, 5(11),10421. 108 Ahn J, Lee S, Kim J H, et al. Nanoscale Advance, 2020, 2,5600. 109 Xu X, Xiao S N, Willy H J, et al. Applied Catalysis B: Environmental, 2020, 262,118307.