Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 1-16    https://doi.org/10.11896/j.issn.1005-023X.2017.023.001
  专题栏目:超高性能混凝土及其工程应用 |
综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*
张云升1, 张文华2, 3, 陈振宇2
1 东南大学材料科学与工程学院,南京211189;
2 南京林业大学土木工程学院,南京210037;
3 江苏省建筑科学研究院,南京210008
A Complete Review of Ultra-high Performance Concrete:Design and Preparation, Microstructure, Mechanics and Durability, Engineering Applications
ZHANG Yunsheng1, ZHANG Wenhua2, 3, CHEN Zhenyu2
1 School of Materials Science and Egineering, Southeast University, Nanjing 211189;
2 School of Civil Engineering, Nanjing Forestry University, Nanjing 210037;
3 Jiangsu Research Institute of Building Sccience, Nanjing 210008
下载:  全 文 ( PDF ) ( 3740KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete,UHPC)是新一代建筑材料,具有超高的力学性能和优异的耐久性能,在高层结构、大跨桥梁、海上平台、核反应堆安全壳以及军事防护工程等领域中具有广阔的应用前景。经过20多年的发展,UHPC在设计、制备、性能和工程应用等方面的研究都有了长足进步。为了进一步推动UHPC在土木工程领域的应用,让广大科技人员和工程人员对UHPC有深入系统的认识,本文从UHPC的发展历程、定义、配合比设计理论和制备技术、微观结构形成机理、静态力学性能、动态力学性能、耐久性能和工程应用以及规范标准等几个方面,对UHPC的最新研究动态进行了系统的阐述,有助于促进我国混凝土材料与混凝土结构工程的创新发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张云升
张文华
陈振宇
关键词:  超高性能混凝土  研究进展  力学性能  耐久性能  工程应用    
Abstract: As a new generation of construction material with superior mechanical properties and durability, ultra-high performance concrete (UHPC) can be widely applied in various fields such as skyscrapers, ultra-long span bridges, offshore platforms, nuclear reactor containments and military fortifications. With over 20 years' development, considerable strides have been made in the aspects of design, preparation, properties and engineering application of UHPC. In order to promote the further application of UHPC in civil engineering and enable the technical and engineering community to deepen and systematize the perception on UHPC, we herein elaborately introduces the latest research progress and renders an overall summary of UHPC, from several facets including the development history, definition, design theory of mix proportion, preparation technology, microstructure formation mechanism, static mechanical properties, dynamic mechanical properties, durability, and engineering application. This paper is expected to provoke the innovation and development of concrete materials and structures in China.
Key words:  ultra-high performance concrete    research progress    mechanical property    durability    engineering application
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TB321  
  O347.3  
基金资助: *国家自然科学基金面上项目(51678309); 江苏省自然科学基金面上项目(BK20161529); 中国博士后基金面上项目(2016M600351); 江苏省博士后基金面上项目(1601028B); 江苏高校优势学科建设工程资助项目(PAPD)
作者简介:  张云升:1973年生,博士,教授,主要研究方向为新型水泥基材料、混凝土结构耐久性 E-mail:zhangys279@163.com
引用本文:    
张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
ZHANG Yunsheng, ZHANG Wenhua, CHEN Zhenyu. A Complete Review of Ultra-high Performance Concrete:Design and Preparation, Microstructure, Mechanics and Durability, Engineering Applications. Materials Reports, 2017, 31(23): 1-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.001  或          https://www.mater-rep.com/CN/Y2017/V31/I23/1
1 赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J]. 混凝土世界, 2013(10): 56.
2 Lahlou K, A?tcin P C, Chaallal O. Behaviour of high-strength concrete under confined stresses[J]. Cem Concr Compos, 1992, 14(3): 185.
3 Donza H, Cabrera O, Irassar E F. High-strength concrete with different fine aggregate[J]. Cem Concr Res, 2002, 32(11): 1755.
4 阎培渝,姚燕. 水泥基复合材料科学与技术[M]. 中国建材工业出版社, 1999.
5 Bache H H. Compact reinforced composite basic principles [M]. US: TRIS and ITRD database, 1987.
6 Roy D M, Gouda G R, Bobrowsky A. Very high strength cement pastes prepared by hot pressing and other high pressure techniques[J]. Cem Concr Res, 1972, 2(3): 349.
7 Lewis J A, Boyer M, Bentz D P. “Binder distribution in macro-defect-free cements: Relation between percolative properties and moisture absorption kinetics”[J]. J Am Ceram Soc, 2010, 77(3): 711.
8 Alfani R, Colombet P, D'Amore A, et al. Effect of temperature on thermo-mechanical properties of macro-defect-free cement-polymer composite[J]. J Mater Sci, 1999, 34(23): 5683.
9 Lewis J A, Boyer M A. Effects of an organotitanate cross-linking additive on the processing and properties of macro-defect-free cement[J]. Adv Cem Based Mater, 1995, 2(1): 2.
10 Mojumdar S C, Mazanec K, Drabik M. Macro-defect-free (MDF) cements — Synthesis, thermal, chemical, sem and magnetometric study and moisture resistance[J]. J Therm Anal Calorim, 2006, 83(1): 135.
11 Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7): 1501.
12 Feylessoufi A, Crespin M, Dion P, et al. Controlled rate thermal treatment of reactive powder concretes[J]. Adv Cem Based Mater, 1997, 6(1): 21.
13 Cheyrezy M, Maret V, Frouin L. Microstructural analysis of RPC (reactive powder concrete)[J]. Cem Concr Res, 1995, 25(7): 1491.
14 Bonneau O, Poulin C, Dugat J, et al. Reactive powder concretes: From theory to practice[J]. Concr Int, 1996, 18: 47.
15 Sedran F D L. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cem Concr Res, 1994, 24(6): 997.
16 Schmidt M, Fehling E. Ultra-high-performance concrete: research, development and application in europe[C]∥ Seventh International Symposium on the Utilization of High-Strength/High-Performance Concrete, ACI SP-288. American Concrete Institute, 2005.
17 Tuan N V, Ye G, Breugel K V, et al. The study of using rice husk ash to produce ultra high performance concrete[J]. Constr Build Mater, 2011, 25(4): 2030.
18 Tuan N V, Hanh P H, Thanh L T, et al. Ultra high performance concrete using waste materials for high-rise buildings[C]∥ Procee-dings of CIGOS - 2010 Immeubles de grande Hauteur et Ouvrages Souterrains. Paris, 2010.
19 Wang C, Yang C, Liu F, et al. Preparation of ultra-high perfor-mance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4): 538 (in Chinese).
20 王冲. 特超强高性能混凝土的制备及其结构与性能研究[D]. 重庆:重庆大学, 2005.
21 Sun W, Zhang Y, Liu S, et al. The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete[J]. Cem Concr Res, 2004, 34(10): 1781.
22 Sun W, Lai J Z. Dynamic mechanical behaviour of ultra-high performance cementitious composites on impact loads [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2007(5): 443 (in Chinese).
孙伟,赖建中. 超高性能水泥基复合材料的动态力学性能研究[J]. 解放军理工大学学报(自然科学版), 2007(5): 443.
23 Rong Z D, Sun W, Zhang Y S. Influence of steel fiber volume fraction and strain rate on spalling behavior of ultra-high performance cementitious composites [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2009,(6): 542 (in Chinese).
戎志丹,孙伟,张云升. 钢纤维掺量和应变率对超高性能水泥基复合材料层裂的影响[J]. 解放军理工大学学报(自然科学版), 2009(6): 542.
24 Jiao C J, Sun W, Lai J Z, et al. Mechanical properties of ecological reactive powder concrete under uniaxial compression [J]. Ind Constr, 2004(1):60 (in Chinese).
焦楚杰,孙伟,赖建中,等. 生态型活性粉末混凝土单轴压缩力学性能[J]. 工业建筑, 2004(1): 60.
25 Lai J Z, Sun W, Lin W, et al. Static and dynamic mechanical behaviour of ECO-RPC [J]. J Southeast Univ (English Edition), 2005(02): 197.
26 Jiang G Q, Sun W, Liu X Q. Experimental research on the preparation and performance of ecological cementitious composites [J]. J Xi??an Univ Archit Technol (Nat Sci Ed), 2008(1): 93 (in Chinese).
姜国庆,孙伟,刘小泉. 生态型工程水泥基复合材料的制备与性能研究[J]. 西安建筑科技大学学报(自然科学版), 2008(1): 93.
27 Reda M M, Shrive N G, Gillott J E. Microstructural investigation of innovative UHPC[J]. Cem Concr Res, 1999, 29(3): 323.
28 Sedran F D L. Optimization of ultra-high-performance concrete by the use of a packing model [J]. Cem Concr Res, 1994, 24(6): 997.
29 Larrard F D, Sedran T. Mixture-proportioning of high-performance concrete [J]. Cem Concr Res, 2002, 32(11): 1699.
30 Richard P, Cheyrezy M. Composition of reactive powder concretes [J]. Cem Concr Res, 1995, 25(7): 1501.
31 Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cem Concr Res, 2014, 56(2): 29.
32 Norhasri M S M, Hamidah M S, Fadzil A M. Applications of using nano material in concrete: a review [J]. Constr Build Mater, 2017, 133: 91.
33 Jankovic' K, Stankovic' S, Bojovic' D, et al. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete [J]. Constr Build Mater, 2016, 126: 147.
34 Gesoglu M, Güneyisi E, Asaad D S, et al. Properties of low binder ultra-high performance cementitious composites: comparison of nanosilica and microsilica[J]. Constr Build Mater, 2016, 102: 706.
35 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2017, 77: 86.
36 He S, Qiu J, Li J, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers [J]. Cem Concr Res, 2017, 98: 50.
37 Meng W, Khayat K H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers [J]. Composites Part B, 2016, 107: 113.
38 Chen Z, Lim J L G, Yang E H. Ultra high performance cement-based composites incorporating low dosage of plasma synthesized carbon nanotubes[J]. Mater Des, 2016, 108: 479.
39 Van V T A, R?βler C, Bui D D, et al. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete[J]. Cem Concr Compos, 2014, 53(10): 270.
40 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC[J]. Mater Des, 2017, 121: 36.
41 Norhasri M S M, Hamidah M S, Fadzil A M, et al. Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC)[J]. Constr Build Mater, 2016, 127: 167.
42 Soliman N A, Tagnit-Hamou A. Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap[J]. Constr Build Mater, 2017, 139: 374.
43 Ghafari E, Costa H, Júlio E. Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials [J]. Constr Build Mater, 2015, 101: 201.
44 Jiao C J, Sun W, Gao P Z, et al. Numerical simulation of SFRC subjected to blasting load [J]. Concrete, 2005(7): 43 (in Chinese).
焦楚杰,孙伟,高培正,等. 钢纤维混凝土抗爆炸数值模拟[J]. 混凝土, 2005(7): 43.
45 Zhang W H. Investigation of microstructure formation mechanism and dynamic mechanical behavior of UHPCC [D]. Nanjing: Sou-theast University, 2013 (in Chinese).
张文华. 超高性能水泥基复合材料微结构形成机理与动态力学行为研究[D]. 南京: 东南大学, 2013.
46 Denarié E, Brühwiler E, Lestuzzi P, et al. Guidance for the use of UHPFRC for rehabilitation of concrete highway structures [M]∥ Sustainable and Advanced MAterials for Road Infra Structure. Australia: SAMARIS Management Group, 2006.
47 Liu J Z. Preparation and static, dynamic mechanical behavior of ultra-high performance concrete [D]. Nanjing: Southeast University, 2013 (in Chinese).
刘建忠. 超高性能水泥基复合材料制备技术及静动态拉伸行为研究[D]. 南京: 东南大学, 2013.
48 Schachinger I, Schubert J, Mazanec O. Effect of mixing and placement methods on fresh and hardened ultra high performance concrete (UHPC)[J]. Cem Concr Res, 2004(1): 101.
49 Dils J, Boel V, Schutter G D. Influence of Cement Type and Mixing Pressure On Air Content, Rheology and Mechanical Properties of UHPC[J]. Constr Build Mater, 2013, 41(41): 455.
50 Jolin M, Burns D, Bissonnette B, et al. Understanding the Pumpability of Concrete[C]∥ shotcrete for underground support XI. NY, US: ECI, 2009.
51 Bonneau O, Vernet C, Moranville M, et al. Characterization of the granular packing and percolation threshold of reactive powder concrete [J]. Cem Concr Res, 2000, 30(12): 1861.
52 Sorelli L, Constantinides G, Ulm F J, et al. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques [J]. Cem Concr Res, 2008, 38(12): 1447.
53 Fennis S A A M, Walraven J C, Uijl J A D. Compaction-interaction packing model: regarding the effect of fillers in concrete mixture design [J]. Mater Struct, 2013, 46(3): 463.
54 Morin V, Cohen-Tenoudji F, Feylessoufi A, et al. Evolution of the capillary network in a reactive powder concrete during hydration process [J]. Cem Concr Res, 2002, 32(12): 1907.
55 Wang D, Shi C, Wu Z, et al. A review on ultra high performance concrete: Part II. hydration, microstructure and properties[J]. Constr Build Mater, 2015, 96: 368.
56 Korpa A, Kowald T, Trettin R. Phase development in normal and ultra high performance cementitious systems by quantitative x-ray analysis and thermoanalytical methods[J]. Cem Concr Res, 2009, 39(2): 69.
57 Zhang W H, Zhang Y S. Apparatus for monitoring the resistivity of the hydration of cement cured at high temperature [J]. Instrum Sci Technol, 2017, 45: 151.
58 Zhang W H, Zhang Y S. Investigation on the hydration process of ultra-high performance of cementitious composites under high temperature curing [J]. Bull Chin Ceram Soc, 2015, 34(4): 951 (in Chinese).
张文华,张云升. 高温条件下超高性能水泥基复合材料水化放热研究[J]. 硅酸盐通报, 2015, 34(4): 951.
59 Zhang W H, Zhang Y S. Research progress on the hydration, har-dening and microstructure formation mechanism of modern concrete under high temperature curing conditions [J]. Bull Chin Ceram Soc, 2015, 34(1): 149 (in Chinese).
张文华,张云升. 高温养护条件下现代混凝土水化、硬化及微结构形成机理研究进展[J]. 硅酸盐通报, 2015, 34(1): 149.
60 Zanni H, Cheyrezy M, Maret V, et al. Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29 Si NMR[J]. Cem Concr Res, 1996, 26(1): 93.
61 YazIcI H, Yi?iter H, Karabulut A ?, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J]. Fuel, 2008, 87(12): 2401.
62 Philippot S, Masse S, Zanni H, et al. 29 Si NMR study of hydration and pozzolanic reactions in reactive powder concrete (RPC) [J]. Magn Resonance Imaging, 1996, 14(7-8): 891.
63 Odler I. Hydration, setting and hardening of portland cement [M]∥ Lea??s Chemistry of Cement and Concrete. Oxford: Elsevier, 2003: 241.
64 Hadley D W, Dolch W L, Diamond S. on the occurrence of hollow-shell hydration grains in hydrated cement paste [J]. Cem Concr Res, 2000, 30(1): 1.
65 Feng S X. Technique of backscattered electron beam imaging and image analysis and its application in study of cement pastes [D]. Shanghai: Tongji University, 2013 (in Chinese).
丰曙霞. 背散射电子图像分析技术及其在水泥浆体研究中的应用[D]. 上海: 同济大学, 2013.
66 Scrivener K L. Backscattered electron imaging of cementitious microstructures: Understanding and quantification [J]. Cem Concr Compos, 2004, 26(8): 935.
67 Kjellsen K O, Atlassi E H. Pore structure of cement silica fume systems presence of hollow-shell pores 1[J]. Cem Concr Res, 1999, 29(1): 133.
68 Pu X C, Yan W N, Wang C. Contributions of silica-fume to strength and flowability of 150MPa ultra-high strength and high flowable concrete [J]. China Concre Cem Prod, 2000(1):8 (in Chinese).
蒲心诚,严吴南,王冲. 硅灰对150MPa超高强高流态混凝土的强度及流动性的贡献[J]. 混凝土与水泥制品, 2000(1): 8.
69 Yan P Y, Zhang B. Mechanical properties of high strength concrete prepared with different densities of silica fume [J]. J Chin Ceram Soc, 2016, 44(2): 196 (in Chinese).
阎培渝,张波. 以不同形态硅灰配制的高强混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(2): 196.
70 Huang W, Sun W. Effects of limestone addition on hydration deve-lopment of ultra-high performance concrete [J]. J Southeast Univ (Nat Sci Ed), 2017, 47(4):751 (in Chinese).
黄伟,孙伟. 石灰石粉掺量对超高性能混凝土水化演变的影响[J]. 东南大学学报(自然科学版), 2017, 47(4): 751.
71 Schmidt M, Fehling E. Ultra-high-performance concrete: Research, development and application in Europe[C]∥ Seventh International Symposium on the Utilization of High-Strength/High-Performance Concrete, ACI SP-288. US: American Concrete Institute, 2005.
72 van de Voort T L, Suleiman M T, Sritharan S. Design and perfor-mance verification of ultra-high performance concrete piles for deep foundations [R]. IA, US: Iowa Department of Transportation, 2008.
73 Tuan N V, Ye G, Breugel K V, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash [J]. Cem Concr Res, 2011, 41(11): 1104.
74 丁俊勇. 生态型稻壳灰超高性能水泥基复合材料的制备及机理分析[D]. 南京: 东南大学, 2015.
75 姜广. 生态型偏高岭土超高性能水泥基复合材料的制备及机理分析[D]. 南京: 东南大学, 2015.
76 Chen Y L, Zhao Y N, Li J, et al. High performance concrete with metakaolin mixed replacing of silica fume [J]. J Chin Ceram Soc, 2004, 32(4): 524 (in Chinese).
陈益兰,赵亚妮,李静,等. 偏高岭土替代硅灰配制高性能混凝土[J]. 硅酸盐学报, 2004, 32(4): 524.
77 Su Y, Wu C, Li J, et al. Development of novel ultra-high perfor-mance concrete: from material to structure [J]. Constr Build Mater, 2017, 135: 517.
78 Huang Z Y, Cao F L. Effects of nano-materials on the performance of UHPC [J]. Mater Rev: Res, 2012, 26(9): 136 (in Chinese).
黄政宇,曹方良. 纳米材料对超高性能混凝土性能的影响[J]. 材料导报, 2012, 26(9): 136.
79 Rong Z D, Wang R, Lin F B. Study on the microstructure evolution of nano-ultra high performance cementitious composites [J]. J Shenzhen Univ (Sci Eng), 2013, 30(6): 611 (in Chinese).
戎志丹,王瑞,林发彬. 纳米超高性能水泥基复合材料微结构演变研究[J]. 深圳大学学报(理工版), 2013, 30(6): 611.
80 Rong Z D, Jiang G, Sun W. Effects of nano-SiO2 and nano-CaCO3 on properties of ultra-high performance cementitious composites [J]. J Southeast Univ (Nat Sci Ed), 2015, 45(2): 393 (in Chinese).
戎志丹,姜广,孙伟. 纳米SiO2和CaCO3对超高性能水泥基复合材料的影响[J]. 东南大学学报(自然科学版), 2015, 45(2): 393.
81 曹君辉,邵旭东,黄政宇. 超高性能混凝土(Uhpc)的抗压性能[Z]. 2017.
82 Richard P, Cheyrezy M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength [J]. ACI Special Publication, 1994, 114: 507.
83 Rong Z D, Sun W, Chen H S, et al. Mechanical behaviors and microstructure mechanism analysis of ultra high performance cementitious composites [J]. J Shenzhen Univ (Sci Eng), 2010, 27(1): 88 (in Chinese).
戎志丹,孙伟,陈惠苏,等. 超高性能水泥基材料的力学行为及机理分析[J]. 深圳大学学报(理工版), 2010, 27(1): 88.
84 Rossi P. Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites[J]. Cem Concr Compos, 2013, 37(1): 246.
85 Shi L A, Ma H Y, Rong Z D. Influence of basalt fiber and its geotextile on mechanical performance of ultra-high performance cement composites [J]. J Nanjing Univ Aeronaut Astronaut, 2012, 44(3): 415 (in Chinese).
石立安,麻海燕,戎志丹. 玄武岩纤维及其格栅布对超高性能水泥基复合材料力学性能的影响规律[J]. 南京航空航天大学学报, 2012, 44(3): 415.
86 Zhang X Z, Sun W, Zhang Q Q. Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites [J]. J Southeast Univ (Nat Sci Ed), 2008, 38(1): 156 (in Chinese).
张秀芝,孙伟,张倩倩,等. 混杂钢纤维增强超高性能水泥基材料力学性能分析[J]. 东南大学学报(自然科学版), 2008, 38(1): 156.
87 Graybeal B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete [J]. ACI Mater J, 2007, 104(2): 146.
88 Fehling E, Leutbecher T, Bunje K. Design relevant properties of hardened ultra high performance concrete [C]∥ Int. Symp. on Ultra High Performance Concrete. ACI, 2004.
89 Prabha S L, Dattatreya J K, Neelamegam M, et al. Study on stress-strain properties of reactive powder concrete under uniaxial compression[J]. Int J Eng Sci Technol, 2010, 2(11): 6408
90 单波. 活性粉末混凝土基本力学性能的试验与研究[D]. 长沙: 湖南大学, 2002.
91 闫光杰. 200MPa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究[D]. 北京: 北京交通大学, 2005.
92 Zheng Z C. Experimental study for the basic performance of the basalt fiber reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2013 (in Chinese).
郑遵畅. 玄武岩纤维活性粉末混凝土基本性能试验研究[D]. 北京交通大学, 2013.
93 Shen T. Constitutive relationship of reactive powder concrete under uni-axial compression and research on parameter of structural design [D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
沈涛. 活性粉末混凝土单轴受压本构关系及结构设计参数研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
94 Huang Z Y, Tan B. Research on stress-strain curves of reactive powder concretewith steel-fiber under uniaxial compression [J]. J China Three Gorges Univ (Nat Sci), 2007(5): 415 (in Chinese).
黄政宇, 谭彬. 活性粉末钢纤维混凝土受压应力-应变全曲线的研究[J]. 三峡大学学报(自然科学版), 2007(5): 415.
95 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete [J]. J Archit Civ Eng, 2014(3): 1 (in Chinese).
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014(3): 1.
96 Graybeal B A. Material property characterization of ultra-high performance concrete[R]. FHWA-HRT-06-103. VA, US: Federal Highway Administration, 2006.
97 An M Z, Yang Z H, Yu Z R, et al. Experimental study on the tensile performance of reactive powder concrete [J]. J China Railway Soc, 2010, 32(1): 54 (in Chinese).
安明喆,杨志慧,余自若,等. 活性粉末混凝土抗拉性能研究[J]. 铁道学报, 2010, 32(1): 54.
98 原海燕,安明喆,贾方方,等. 活性粉末混凝土轴拉性能试验研究[C]∥ 第19届全国结构工程学术会议. 济南, 2010: 141.
99 邱明红,邵旭东,黄政宇. 超高性能混凝土(Uhpc)的抗拉性能(上)[Z]. 2017.
100Wille K, Dong J K, Naaman A E. Strain-hardening uhp-frc with low fiber contents [J]. Mater Struct, 2011, 44(3): 583.
101Pyo S, Kim H K, Bang Y L. Effects of coarser fine aggregate on tensile properties of ultra high performance concrete [J]. Cem Concr Compos, 2017, 84: 28.
102Kang S T, Choi J I, Koh K T, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Compos Struct, 2016, 145: 37.
103Kolsky H. An investigation of the mechanical properties of mate-rials at very high rates of loading [J]. Proc Phys Soc, 1949, 62(11): 676.
104Tedesco J W, Ross C A, Hughes M L. Load rate effects on concrete compressive strength [C]∥Structures Congress XII. US: American Society of Civil Engineers, 2015.
105Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength[J]. ACI Mater J, 1995, 92(1): 37.
106Albertini C, Cadoni E, Labibes K. Dynamic mechanical behaviour of large concrete specimen by means of a bundle hopkinson bars [C]∥Proceedings of 2nd International Symposium on Impact Engine-ering. France: RILEM, 1996.
107Liu X M, Hu S S. Wave propagation characteristics in cone bars used for variable cross-section SHPB [J]. Explosion Shock Waves, 2000(2): 110 (in Chinese).
刘孝敏,胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000(2): 110.
108Meng Y P, Hu S S. Some problems in the test of concrete under impact compressive loading [J]. J Experim Mech, 2003(1): 108 (in Chinese).
孟益平,胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003(1): 108.
109孟益平. 钢纤维增强混凝土冲击压缩的实验技术、本构关系、损伤机理和数值模拟[D]. 合肥: 中国科学技术大学, 2005.
110张磊. 混凝土层裂强度的研究[D]. 合肥: 中国科学技术大学, 2006.
111Tai Y S. Uniaxial compression tests at various loading rates for reactive powder concrete [J]. Theor Appl Fract Mech, 2009, 52(1): 14.
112Wang Y H, Wang Z D, Liang X Y, et al. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes[J]. Acta Mech Solid Sin, 2008, 21(5): 420.
113Wang Y H, Liang X Y, Wang Z D, et al. Experimental study on the impact compressive behavior of reactive powder concrete [J]. Eng Mech, 2008(11): 167 (in Chinese).
王勇华,梁小燕,王正道,等. 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008(11): 167.
114Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Mater Struct, 1991, 24(6): 425.
115Cotsovos D M, Pavlovic' M N. Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates [J]. Comput Struct, 2008, 86(1): 145.
116Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. Int J Solid Struct, 2003, 40(2): 343.
117Chen G, Tao J L, Chen Z F, et al. Correction of lateral inertia effect in SHPB [J]. J Southwest Univ Sci Technol, 2008, 23(2):15 (in Chinese).
陈刚,陶俊林,陈忠富,等. SHPB的径向惯性效应修正[J]. 西南科技大学学报, 2008, 23(2): 15.
118Rong Z D, Sun W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites [J]. Explosion Shock Waves, 2009, 29(4): 361 (in Chinese).
戎志丹,孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响[J]. 爆炸与冲击, 2009, 29(4): 361.
119Rong Z, Sun W, Zhang Y. Dynamic compression behavior of ultra-high performance cement based composites[J]. Int J Impact Eng, 2010, 37(5): 515.
120Zhang W H, Zhang Y S. Research on the static and dynamic compressive properties of high performance cementitious composite (HPCC) containing coarse aggregate [J]. Arch Civ Mech Eng, 2015, 15(3): 711.
121Rong Z D, Jiang G, Sun W, et al. Mechanical behavior and microstructure analysis of ultra-high performance steel fiber reinforced cementitious composites [J]. J Hebei Univ Technol, 2014, 43(6): 30 (in Chinese).
戎志丹,姜广,孙伟,等. 超高性能钢纤维增强水泥基复合材料的力学性能及微结构分析[J]. 河北工业大学学报, 2014, 43(6): 30.
122Zhang W H, Zhang Y S, et al. Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite [J]. J Wuhan Univ Technol (Mater Sci Ed), 2011, 26(6): 1227.
123Zhang W, Zhang Y, Zhang G. Static, dynamic mechanical properties and microstructure characteristics of ultra-high performance cementitious composites[J]. Sci Eng Compos Mater, 2012, 19(3): 237.
124Wu X T, Hu S S, Chen D X, et al. Impact compression experiment of steel fiber reinforced high strength concrete [J]. Explosion Shock Waves, 2005, 25(2): 125 (in Chinese).
巫绪涛,胡时胜,陈德兴,等. 钢纤维高强混凝土冲击压缩的试验研究[J]. 爆炸与冲击, 2005, 25(2): 125.
125Fujikake K, Uebayashi K, Ohno T, et al. Dynamic properties of steel fiber reinforced mortar under high-rates of loadings and triaxial stress states [J]. WIT Trans Built Environ, 2002, 63: 10.
126Díaz-Rubio F G, Pérez J R, Gálvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. Int J Impact Eng, 2002, 27(2): 161.
127Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling [J]. Int J Impact Eng, 2001, 25(4): 387.
128Lai J Z, Sun W. Dynamic mechanical behaviour of ultra-high performance fiber reinforced concretes [J]. J Wuhan Univ Technol (Mater Sci Ed), 2008, 23(6): 938.
129Lai J Z, Sun W. The spalling behavior of reactive powder concrete [J]. Eng Mech, 2009(1): 137 (in Chinese).
赖建中,孙伟. 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009(1): 137.
130Lai J Z, Sun W, Jiao C J, et al. Dynamic mechanical properties of ecological reactive powder concrete [J]. Ind Constr, 2004(12), 63 (in Chinese).
赖建中,孙伟,焦楚杰,等. 生态型RPC材料的动态力学性能[J]. 工业建筑, 2004(12): 63.
131Rong Z D, Sun W, Zhang Y S. Influence of steel fiber volume fraction and strain rate on spalling behavior of ultra-high performance cementitious composites [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2009, 10(6): 542 (in Chinese).
戎志丹,孙伟,张云升. 钢纤维掺量和应变率对超高性能水泥基复合材料层裂的影响[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 542.
132Chen B S, Xiao Y, Huang Z Y, et al. Experimental study on the spalling strength of fiber reactive powder concrete [J]. J Hunan Univ (Nat Sci), 2009, 36(7): 12 (in Chinese).
陈柏生,肖岩,黄政宇,等. 钢纤维活性粉末混凝土动态层裂强度试验研究[J]. 湖南大学学报(自然科学版), 2009, 36(7): 12.
133Wu H, Fang Q, Chen X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-1320 M/S[J]. Constr Build Mater, 2015, 74: 188.
134She W, Zhang Y S, Sun W, et al. Experimental research on anti-penetration and anti-explosion properties of green ultra-high performance fiber reinforced cement-based protective materials [J]. Chin J Rock Mech Eng, 2011, 30(S1): 2777(in Chinese).
佘伟,张云升,孙伟,等. 绿色超高性能纤维增强水泥基防护材料抗侵彻、抗爆炸试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2777.
135Rong Z D, Sun W, Zhang Y S. A study on anti-penetration characteristics of high and ultra-high performance steel fiber reinforced concrete [J]. J Ballistics, 2010, 22(3): 63 (in Chinese).
戎志丹,孙伟,张云升,等. 高与超高性能钢纤维混凝土的抗侵彻性能研究[J]. 弹道学报, 2010, 22(3): 63.
136Lai J Z, Guo X J, Zhu Y Y. Properties of ultra-high performance concrete subjected to penetration and explosion [J]. J Hebei Univ Technol, 2014, 43(6): 50 (in Chinese).
赖建中,过旭佳,朱耀勇. 超高性能混凝土抗侵彻及抗爆炸性能研究[J]. 河北工业大学学报, 2014, 43(6): 50.
137Lai J Z, Zhu Y Y, Tan J M. Experiment and simulation of ultra-high performance concrete subjected to blast by embedded explosive [J]. Eng Mech, 2016, 33(5): 193(in Chinese).
赖建中,朱耀勇,谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5): 193.
138Rong Z D, Sun W, Zhang Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. J North China Inst Water Conserv Hydroelectr Power, 2012, 33(6): 1 (in Chinese).
戎志丹,孙伟,张云升,等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究[J]. 华北水利水电学院学报, 2012, 33(6): 1.
139Zhang W H, Zhang Y S. Explosion experimental and simulation of ultra-high performance of cementitious composites [J]. Concrete, 2015(11):31 (in Chinese).
张文华,张云升. 超高性能水泥基复合材料抗爆炸试验及数值仿真分析[J]. 混凝土, 2015(11): 31.
140Alkaysi M, El-Tawil S, Liu Z, et al. Effects of silica powder and cement type on durability of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2016, 66: 47.
141Ghafari E, Arezoumandi M, Costa H, et al. Influence of nano-silica addition on durability of UHPC [J]. Constr Build Mater, 2015, 94: 181.
142Tafraoui A, Escadeillas G, Vidal T. Durability of the ultra high performances concrete containing metakaolin[J]. Constr Build Mater, 2016, 112: 980.
143Shaheen E, Shrive N G. Optimization of mechanical properties and durability of reactive powder concrete [J]. ACI Mater J, 2007, 103(6): 444.
144赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之三:收缩与裂缝,耐高温性能,渗透性与耐久性,设计指南[J]. 混凝土世界, 2013(12): 60.
145Du R Y, Huang Q W, Chen B C. Application and study of reactive powder concrete to bridge engineering [J]. World Bridges, 2013, 41(1): 69(in Chinese).
杜任远,黄卿维,陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41(1): 69.
146赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之四:工程与产品应用,价值、潜力与可持续发展[J]. 混凝土世界, 2014(1): 48.
147Graybeal B. UHPC in the U.S. highway infrastructure: experience and outlook [C]∥RILEM-fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete. France: RILEM Publications, 2009.
148Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC waffle deck panel system, including connections [R]. FHWA-HIF-13-032. US: Federal Highway Administration, 2013.
149Yoshihiro Tanaka, Koichi Maekawa, Yutaka Kameyama, et al. 12. The innovation and application of UHPFRC bridges in Japan [M]∥Designing and building with UHPFRC. John Wiley & Sons, Inc., 2013: 1298.
150Ekkehard Fehling, Kai Bunje. 10. G?rtnerplatz — bridge over ri-ver fulda in kassel: multispan hybrid UHPC-steel bridge[M]// Designing and building with UHPFRC. John Wiley & Sons, Inc., 2013: 136.
151Du R Y, Chen B C. Experimental research on the ultimate load capacity of reactive powder concrete arches [J]. Eng Mech, 2013, 30(5): 42 (in Chinese).
杜任远,陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5): 42.
152 Chen B C, Li S Y, Yu J, et al. Trial design of reactive powder concrete long span arch bridge [J]. J Changsha Commun Univ, 2009(1): 32 (in Chinese).
陈宝春,李生勇,余健,等. 大跨度活性粉末混凝土拱桥试设计[J]. 交通科学与工程, 2009(1): 32.
153 Huang Q W, Fu Y F, Xu C C, et al. Trial design research on super long span reactive powder concrete arch bridge [J]. J Nanchang Univ (Eng Technol), 2015(3): 252 (in Chinese).
黄卿维,傅元方,许春春,等. 超大跨径活性粉末混凝土拱桥试设计研究[J]. 南昌大学学报(工科版), 2015(3): 252.
154 Du R Y, Huang Q W, Chen B C. Application and study of reactive powder concrete to bridge engineering [J]. World Bridge, 2013, 41(1): 69 (in Chinese).
杜任远,黄卿维,陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41(1): 69.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed