A Complete Review of Ultra-high Performance Concrete:Design and Preparation, Microstructure, Mechanics and Durability, Engineering Applications
ZHANG Yunsheng1, ZHANG Wenhua2, 3, CHEN Zhenyu2
1 School of Materials Science and Egineering, Southeast University, Nanjing 211189; 2 School of Civil Engineering, Nanjing Forestry University, Nanjing 210037; 3 Jiangsu Research Institute of Building Sccience, Nanjing 210008
Abstract: As a new generation of construction material with superior mechanical properties and durability, ultra-high performance concrete (UHPC) can be widely applied in various fields such as skyscrapers, ultra-long span bridges, offshore platforms, nuclear reactor containments and military fortifications. With over 20 years' development, considerable strides have been made in the aspects of design, preparation, properties and engineering application of UHPC. In order to promote the further application of UHPC in civil engineering and enable the technical and engineering community to deepen and systematize the perception on UHPC, we herein elaborately introduces the latest research progress and renders an overall summary of UHPC, from several facets including the development history, definition, design theory of mix proportion, preparation technology, microstructure formation mechanism, static mechanical properties, dynamic mechanical properties, durability, and engineering application. This paper is expected to provoke the innovation and development of concrete materials and structures in China.
1 赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J]. 混凝土世界, 2013(10): 56. 2 Lahlou K, A?tcin P C, Chaallal O. Behaviour of high-strength concrete under confined stresses[J]. Cem Concr Compos, 1992, 14(3): 185. 3 Donza H, Cabrera O, Irassar E F. High-strength concrete with different fine aggregate[J]. Cem Concr Res, 2002, 32(11): 1755. 4 阎培渝,姚燕. 水泥基复合材料科学与技术[M]. 中国建材工业出版社, 1999. 5 Bache H H. Compact reinforced composite basic principles [M]. US: TRIS and ITRD database, 1987. 6 Roy D M, Gouda G R, Bobrowsky A. Very high strength cement pastes prepared by hot pressing and other high pressure techniques[J]. Cem Concr Res, 1972, 2(3): 349. 7 Lewis J A, Boyer M, Bentz D P. “Binder distribution in macro-defect-free cements: Relation between percolative properties and moisture absorption kinetics”[J]. J Am Ceram Soc, 2010, 77(3): 711. 8 Alfani R, Colombet P, D'Amore A, et al. Effect of temperature on thermo-mechanical properties of macro-defect-free cement-polymer composite[J]. J Mater Sci, 1999, 34(23): 5683. 9 Lewis J A, Boyer M A. Effects of an organotitanate cross-linking additive on the processing and properties of macro-defect-free cement[J]. Adv Cem Based Mater, 1995, 2(1): 2. 10 Mojumdar S C, Mazanec K, Drabik M. Macro-defect-free (MDF) cements — Synthesis, thermal, chemical, sem and magnetometric study and moisture resistance[J]. J Therm Anal Calorim, 2006, 83(1): 135. 11 Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7): 1501. 12 Feylessoufi A, Crespin M, Dion P, et al. Controlled rate thermal treatment of reactive powder concretes[J]. Adv Cem Based Mater, 1997, 6(1): 21. 13 Cheyrezy M, Maret V, Frouin L. Microstructural analysis of RPC (reactive powder concrete)[J]. Cem Concr Res, 1995, 25(7): 1491. 14 Bonneau O, Poulin C, Dugat J, et al. Reactive powder concretes: From theory to practice[J]. Concr Int, 1996, 18: 47. 15 Sedran F D L. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cem Concr Res, 1994, 24(6): 997. 16 Schmidt M, Fehling E. Ultra-high-performance concrete: research, development and application in europe[C]∥ Seventh International Symposium on the Utilization of High-Strength/High-Performance Concrete, ACI SP-288. American Concrete Institute, 2005. 17 Tuan N V, Ye G, Breugel K V, et al. The study of using rice husk ash to produce ultra high performance concrete[J]. Constr Build Mater, 2011, 25(4): 2030. 18 Tuan N V, Hanh P H, Thanh L T, et al. Ultra high performance concrete using waste materials for high-rise buildings[C]∥ Procee-dings of CIGOS - 2010 Immeubles de grande Hauteur et Ouvrages Souterrains. Paris, 2010. 19 Wang C, Yang C, Liu F, et al. Preparation of ultra-high perfor-mance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4): 538 (in Chinese). 20 王冲. 特超强高性能混凝土的制备及其结构与性能研究[D]. 重庆:重庆大学, 2005. 21 Sun W, Zhang Y, Liu S, et al. The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete[J]. Cem Concr Res, 2004, 34(10): 1781. 22 Sun W, Lai J Z. Dynamic mechanical behaviour of ultra-high performance cementitious composites on impact loads [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2007(5): 443 (in Chinese). 孙伟,赖建中. 超高性能水泥基复合材料的动态力学性能研究[J]. 解放军理工大学学报(自然科学版), 2007(5): 443. 23 Rong Z D, Sun W, Zhang Y S. Influence of steel fiber volume fraction and strain rate on spalling behavior of ultra-high performance cementitious composites [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2009,(6): 542 (in Chinese). 戎志丹,孙伟,张云升. 钢纤维掺量和应变率对超高性能水泥基复合材料层裂的影响[J]. 解放军理工大学学报(自然科学版), 2009(6): 542. 24 Jiao C J, Sun W, Lai J Z, et al. Mechanical properties of ecological reactive powder concrete under uniaxial compression [J]. Ind Constr, 2004(1):60 (in Chinese). 焦楚杰,孙伟,赖建中,等. 生态型活性粉末混凝土单轴压缩力学性能[J]. 工业建筑, 2004(1): 60. 25 Lai J Z, Sun W, Lin W, et al. Static and dynamic mechanical behaviour of ECO-RPC [J]. J Southeast Univ (English Edition), 2005(02): 197. 26 Jiang G Q, Sun W, Liu X Q. Experimental research on the preparation and performance of ecological cementitious composites [J]. J Xi??an Univ Archit Technol (Nat Sci Ed), 2008(1): 93 (in Chinese). 姜国庆,孙伟,刘小泉. 生态型工程水泥基复合材料的制备与性能研究[J]. 西安建筑科技大学学报(自然科学版), 2008(1): 93. 27 Reda M M, Shrive N G, Gillott J E. Microstructural investigation of innovative UHPC[J]. Cem Concr Res, 1999, 29(3): 323. 28 Sedran F D L. Optimization of ultra-high-performance concrete by the use of a packing model [J]. Cem Concr Res, 1994, 24(6): 997. 29 Larrard F D, Sedran T. Mixture-proportioning of high-performance concrete [J]. Cem Concr Res, 2002, 32(11): 1699. 30 Richard P, Cheyrezy M. Composition of reactive powder concretes [J]. Cem Concr Res, 1995, 25(7): 1501. 31 Yu R, Spiesz P, Brouwers H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cem Concr Res, 2014, 56(2): 29. 32 Norhasri M S M, Hamidah M S, Fadzil A M. Applications of using nano material in concrete: a review [J]. Constr Build Mater, 2017, 133: 91. 33 Jankovic' K, Stankovic' S, Bojovic' D, et al. The influence of nano-silica and barite aggregate on properties of ultra high performance concrete [J]. Constr Build Mater, 2016, 126: 147. 34 Gesoglu M, Güneyisi E, Asaad D S, et al. Properties of low binder ultra-high performance cementitious composites: comparison of nanosilica and microsilica[J]. Constr Build Mater, 2016, 102: 706. 35 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2017, 77: 86. 36 He S, Qiu J, Li J, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers [J]. Cem Concr Res, 2017, 98: 50. 37 Meng W, Khayat K H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers [J]. Composites Part B, 2016, 107: 113. 38 Chen Z, Lim J L G, Yang E H. Ultra high performance cement-based composites incorporating low dosage of plasma synthesized carbon nanotubes[J]. Mater Des, 2016, 108: 479. 39 Van V T A, R?βler C, Bui D D, et al. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete[J]. Cem Concr Compos, 2014, 53(10): 270. 40 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC[J]. Mater Des, 2017, 121: 36. 41 Norhasri M S M, Hamidah M S, Fadzil A M, et al. Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC)[J]. Constr Build Mater, 2016, 127: 167. 42 Soliman N A, Tagnit-Hamou A. Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap[J]. Constr Build Mater, 2017, 139: 374. 43 Ghafari E, Costa H, Júlio E. Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials [J]. Constr Build Mater, 2015, 101: 201. 44 Jiao C J, Sun W, Gao P Z, et al. Numerical simulation of SFRC subjected to blasting load [J]. Concrete, 2005(7): 43 (in Chinese). 焦楚杰,孙伟,高培正,等. 钢纤维混凝土抗爆炸数值模拟[J]. 混凝土, 2005(7): 43. 45 Zhang W H. Investigation of microstructure formation mechanism and dynamic mechanical behavior of UHPCC [D]. Nanjing: Sou-theast University, 2013 (in Chinese). 张文华. 超高性能水泥基复合材料微结构形成机理与动态力学行为研究[D]. 南京: 东南大学, 2013. 46 Denarié E, Brühwiler E, Lestuzzi P, et al. Guidance for the use of UHPFRC for rehabilitation of concrete highway structures [M]∥ Sustainable and Advanced MAterials for Road Infra Structure. Australia: SAMARIS Management Group, 2006. 47 Liu J Z. Preparation and static, dynamic mechanical behavior of ultra-high performance concrete [D]. Nanjing: Southeast University, 2013 (in Chinese). 刘建忠. 超高性能水泥基复合材料制备技术及静动态拉伸行为研究[D]. 南京: 东南大学, 2013. 48 Schachinger I, Schubert J, Mazanec O. Effect of mixing and placement methods on fresh and hardened ultra high performance concrete (UHPC)[J]. Cem Concr Res, 2004(1): 101. 49 Dils J, Boel V, Schutter G D. Influence of Cement Type and Mixing Pressure On Air Content, Rheology and Mechanical Properties of UHPC[J]. Constr Build Mater, 2013, 41(41): 455. 50 Jolin M, Burns D, Bissonnette B, et al. Understanding the Pumpability of Concrete[C]∥ shotcrete for underground support XI. NY, US: ECI, 2009. 51 Bonneau O, Vernet C, Moranville M, et al. Characterization of the granular packing and percolation threshold of reactive powder concrete [J]. Cem Concr Res, 2000, 30(12): 1861. 52 Sorelli L, Constantinides G, Ulm F J, et al. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques [J]. Cem Concr Res, 2008, 38(12): 1447. 53 Fennis S A A M, Walraven J C, Uijl J A D. Compaction-interaction packing model: regarding the effect of fillers in concrete mixture design [J]. Mater Struct, 2013, 46(3): 463. 54 Morin V, Cohen-Tenoudji F, Feylessoufi A, et al. Evolution of the capillary network in a reactive powder concrete during hydration process [J]. Cem Concr Res, 2002, 32(12): 1907. 55 Wang D, Shi C, Wu Z, et al. A review on ultra high performance concrete: Part II. hydration, microstructure and properties[J]. Constr Build Mater, 2015, 96: 368. 56 Korpa A, Kowald T, Trettin R. Phase development in normal and ultra high performance cementitious systems by quantitative x-ray analysis and thermoanalytical methods[J]. Cem Concr Res, 2009, 39(2): 69. 57 Zhang W H, Zhang Y S. Apparatus for monitoring the resistivity of the hydration of cement cured at high temperature [J]. Instrum Sci Technol, 2017, 45: 151. 58 Zhang W H, Zhang Y S. Investigation on the hydration process of ultra-high performance of cementitious composites under high temperature curing [J]. Bull Chin Ceram Soc, 2015, 34(4): 951 (in Chinese). 张文华,张云升. 高温条件下超高性能水泥基复合材料水化放热研究[J]. 硅酸盐通报, 2015, 34(4): 951. 59 Zhang W H, Zhang Y S. Research progress on the hydration, har-dening and microstructure formation mechanism of modern concrete under high temperature curing conditions [J]. Bull Chin Ceram Soc, 2015, 34(1): 149 (in Chinese). 张文华,张云升. 高温养护条件下现代混凝土水化、硬化及微结构形成机理研究进展[J]. 硅酸盐通报, 2015, 34(1): 149. 60 Zanni H, Cheyrezy M, Maret V, et al. Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29 Si NMR[J]. Cem Concr Res, 1996, 26(1): 93. 61 YazIcI H, Yi?iter H, Karabulut A ?, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J]. Fuel, 2008, 87(12): 2401. 62 Philippot S, Masse S, Zanni H, et al. 29 Si NMR study of hydration and pozzolanic reactions in reactive powder concrete (RPC) [J]. Magn Resonance Imaging, 1996, 14(7-8): 891. 63 Odler I. Hydration, setting and hardening of portland cement [M]∥ Lea??s Chemistry of Cement and Concrete. Oxford: Elsevier, 2003: 241. 64 Hadley D W, Dolch W L, Diamond S. on the occurrence of hollow-shell hydration grains in hydrated cement paste [J]. Cem Concr Res, 2000, 30(1): 1. 65 Feng S X. Technique of backscattered electron beam imaging and image analysis and its application in study of cement pastes [D]. Shanghai: Tongji University, 2013 (in Chinese). 丰曙霞. 背散射电子图像分析技术及其在水泥浆体研究中的应用[D]. 上海: 同济大学, 2013. 66 Scrivener K L. Backscattered electron imaging of cementitious microstructures: Understanding and quantification [J]. Cem Concr Compos, 2004, 26(8): 935. 67 Kjellsen K O, Atlassi E H. Pore structure of cement silica fume systems presence of hollow-shell pores 1[J]. Cem Concr Res, 1999, 29(1): 133. 68 Pu X C, Yan W N, Wang C. Contributions of silica-fume to strength and flowability of 150MPa ultra-high strength and high flowable concrete [J]. China Concre Cem Prod, 2000(1):8 (in Chinese). 蒲心诚,严吴南,王冲. 硅灰对150MPa超高强高流态混凝土的强度及流动性的贡献[J]. 混凝土与水泥制品, 2000(1): 8. 69 Yan P Y, Zhang B. Mechanical properties of high strength concrete prepared with different densities of silica fume [J]. J Chin Ceram Soc, 2016, 44(2): 196 (in Chinese). 阎培渝,张波. 以不同形态硅灰配制的高强混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(2): 196. 70 Huang W, Sun W. Effects of limestone addition on hydration deve-lopment of ultra-high performance concrete [J]. J Southeast Univ (Nat Sci Ed), 2017, 47(4):751 (in Chinese). 黄伟,孙伟. 石灰石粉掺量对超高性能混凝土水化演变的影响[J]. 东南大学学报(自然科学版), 2017, 47(4): 751. 71 Schmidt M, Fehling E. Ultra-high-performance concrete: Research, development and application in Europe[C]∥ Seventh International Symposium on the Utilization of High-Strength/High-Performance Concrete, ACI SP-288. US: American Concrete Institute, 2005. 72 van de Voort T L, Suleiman M T, Sritharan S. Design and perfor-mance verification of ultra-high performance concrete piles for deep foundations [R]. IA, US: Iowa Department of Transportation, 2008. 73 Tuan N V, Ye G, Breugel K V, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash [J]. Cem Concr Res, 2011, 41(11): 1104. 74 丁俊勇. 生态型稻壳灰超高性能水泥基复合材料的制备及机理分析[D]. 南京: 东南大学, 2015. 75 姜广. 生态型偏高岭土超高性能水泥基复合材料的制备及机理分析[D]. 南京: 东南大学, 2015. 76 Chen Y L, Zhao Y N, Li J, et al. High performance concrete with metakaolin mixed replacing of silica fume [J]. J Chin Ceram Soc, 2004, 32(4): 524 (in Chinese). 陈益兰,赵亚妮,李静,等. 偏高岭土替代硅灰配制高性能混凝土[J]. 硅酸盐学报, 2004, 32(4): 524. 77 Su Y, Wu C, Li J, et al. Development of novel ultra-high perfor-mance concrete: from material to structure [J]. Constr Build Mater, 2017, 135: 517. 78 Huang Z Y, Cao F L. Effects of nano-materials on the performance of UHPC [J]. Mater Rev: Res, 2012, 26(9): 136 (in Chinese). 黄政宇,曹方良. 纳米材料对超高性能混凝土性能的影响[J]. 材料导报, 2012, 26(9): 136. 79 Rong Z D, Wang R, Lin F B. Study on the microstructure evolution of nano-ultra high performance cementitious composites [J]. J Shenzhen Univ (Sci Eng), 2013, 30(6): 611 (in Chinese). 戎志丹,王瑞,林发彬. 纳米超高性能水泥基复合材料微结构演变研究[J]. 深圳大学学报(理工版), 2013, 30(6): 611. 80 Rong Z D, Jiang G, Sun W. Effects of nano-SiO2 and nano-CaCO3 on properties of ultra-high performance cementitious composites [J]. J Southeast Univ (Nat Sci Ed), 2015, 45(2): 393 (in Chinese). 戎志丹,姜广,孙伟. 纳米SiO2和CaCO3对超高性能水泥基复合材料的影响[J]. 东南大学学报(自然科学版), 2015, 45(2): 393. 81 曹君辉,邵旭东,黄政宇. 超高性能混凝土(Uhpc)的抗压性能[Z]. 2017. 82 Richard P, Cheyrezy M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength [J]. ACI Special Publication, 1994, 114: 507. 83 Rong Z D, Sun W, Chen H S, et al. Mechanical behaviors and microstructure mechanism analysis of ultra high performance cementitious composites [J]. J Shenzhen Univ (Sci Eng), 2010, 27(1): 88 (in Chinese). 戎志丹,孙伟,陈惠苏,等. 超高性能水泥基材料的力学行为及机理分析[J]. 深圳大学学报(理工版), 2010, 27(1): 88. 84 Rossi P. Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites[J]. Cem Concr Compos, 2013, 37(1): 246. 85 Shi L A, Ma H Y, Rong Z D. Influence of basalt fiber and its geotextile on mechanical performance of ultra-high performance cement composites [J]. J Nanjing Univ Aeronaut Astronaut, 2012, 44(3): 415 (in Chinese). 石立安,麻海燕,戎志丹. 玄武岩纤维及其格栅布对超高性能水泥基复合材料力学性能的影响规律[J]. 南京航空航天大学学报, 2012, 44(3): 415. 86 Zhang X Z, Sun W, Zhang Q Q. Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites [J]. J Southeast Univ (Nat Sci Ed), 2008, 38(1): 156 (in Chinese). 张秀芝,孙伟,张倩倩,等. 混杂钢纤维增强超高性能水泥基材料力学性能分析[J]. 东南大学学报(自然科学版), 2008, 38(1): 156. 87 Graybeal B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete [J]. ACI Mater J, 2007, 104(2): 146. 88 Fehling E, Leutbecher T, Bunje K. Design relevant properties of hardened ultra high performance concrete [C]∥ Int. Symp. on Ultra High Performance Concrete. ACI, 2004. 89 Prabha S L, Dattatreya J K, Neelamegam M, et al. Study on stress-strain properties of reactive powder concrete under uniaxial compression[J]. Int J Eng Sci Technol, 2010, 2(11): 6408 90 单波. 活性粉末混凝土基本力学性能的试验与研究[D]. 长沙: 湖南大学, 2002. 91 闫光杰. 200MPa级活性粉末混凝土(RPC200)的破坏准则与本构关系研究[D]. 北京: 北京交通大学, 2005. 92 Zheng Z C. Experimental study for the basic performance of the basalt fiber reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2013 (in Chinese). 郑遵畅. 玄武岩纤维活性粉末混凝土基本性能试验研究[D]. 北京交通大学, 2013. 93 Shen T. Constitutive relationship of reactive powder concrete under uni-axial compression and research on parameter of structural design [D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). 沈涛. 活性粉末混凝土单轴受压本构关系及结构设计参数研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. 94 Huang Z Y, Tan B. Research on stress-strain curves of reactive powder concretewith steel-fiber under uniaxial compression [J]. J China Three Gorges Univ (Nat Sci), 2007(5): 415 (in Chinese). 黄政宇, 谭彬. 活性粉末钢纤维混凝土受压应力-应变全曲线的研究[J]. 三峡大学学报(自然科学版), 2007(5): 415. 95 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete [J]. J Archit Civ Eng, 2014(3): 1 (in Chinese). 陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014(3): 1. 96 Graybeal B A. Material property characterization of ultra-high performance concrete[R]. FHWA-HRT-06-103. VA, US: Federal Highway Administration, 2006. 97 An M Z, Yang Z H, Yu Z R, et al. Experimental study on the tensile performance of reactive powder concrete [J]. J China Railway Soc, 2010, 32(1): 54 (in Chinese). 安明喆,杨志慧,余自若,等. 活性粉末混凝土抗拉性能研究[J]. 铁道学报, 2010, 32(1): 54. 98 原海燕,安明喆,贾方方,等. 活性粉末混凝土轴拉性能试验研究[C]∥ 第19届全国结构工程学术会议. 济南, 2010: 141. 99 邱明红,邵旭东,黄政宇. 超高性能混凝土(Uhpc)的抗拉性能(上)[Z]. 2017. 100Wille K, Dong J K, Naaman A E. Strain-hardening uhp-frc with low fiber contents [J]. Mater Struct, 2011, 44(3): 583. 101Pyo S, Kim H K, Bang Y L. Effects of coarser fine aggregate on tensile properties of ultra high performance concrete [J]. Cem Concr Compos, 2017, 84: 28. 102Kang S T, Choi J I, Koh K T, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Compos Struct, 2016, 145: 37. 103Kolsky H. An investigation of the mechanical properties of mate-rials at very high rates of loading [J]. Proc Phys Soc, 1949, 62(11): 676. 104Tedesco J W, Ross C A, Hughes M L. Load rate effects on concrete compressive strength [C]∥Structures Congress XII. US: American Society of Civil Engineers, 2015. 105Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength[J]. ACI Mater J, 1995, 92(1): 37. 106Albertini C, Cadoni E, Labibes K. Dynamic mechanical behaviour of large concrete specimen by means of a bundle hopkinson bars [C]∥Proceedings of 2nd International Symposium on Impact Engine-ering. France: RILEM, 1996. 107Liu X M, Hu S S. Wave propagation characteristics in cone bars used for variable cross-section SHPB [J]. Explosion Shock Waves, 2000(2): 110 (in Chinese). 刘孝敏,胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000(2): 110. 108Meng Y P, Hu S S. Some problems in the test of concrete under impact compressive loading [J]. J Experim Mech, 2003(1): 108 (in Chinese). 孟益平,胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003(1): 108. 109孟益平. 钢纤维增强混凝土冲击压缩的实验技术、本构关系、损伤机理和数值模拟[D]. 合肥: 中国科学技术大学, 2005. 110张磊. 混凝土层裂强度的研究[D]. 合肥: 中国科学技术大学, 2006. 111Tai Y S. Uniaxial compression tests at various loading rates for reactive powder concrete [J]. Theor Appl Fract Mech, 2009, 52(1): 14. 112Wang Y H, Wang Z D, Liang X Y, et al. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes[J]. Acta Mech Solid Sin, 2008, 21(5): 420. 113Wang Y H, Liang X Y, Wang Z D, et al. Experimental study on the impact compressive behavior of reactive powder concrete [J]. Eng Mech, 2008(11): 167 (in Chinese). 王勇华,梁小燕,王正道,等. 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008(11): 167. 114Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Mater Struct, 1991, 24(6): 425. 115Cotsovos D M, Pavlovic' M N. Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates [J]. Comput Struct, 2008, 86(1): 145. 116Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. Int J Solid Struct, 2003, 40(2): 343. 117Chen G, Tao J L, Chen Z F, et al. Correction of lateral inertia effect in SHPB [J]. J Southwest Univ Sci Technol, 2008, 23(2):15 (in Chinese). 陈刚,陶俊林,陈忠富,等. SHPB的径向惯性效应修正[J]. 西南科技大学学报, 2008, 23(2): 15. 118Rong Z D, Sun W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites [J]. Explosion Shock Waves, 2009, 29(4): 361 (in Chinese). 戎志丹,孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响[J]. 爆炸与冲击, 2009, 29(4): 361. 119Rong Z, Sun W, Zhang Y. Dynamic compression behavior of ultra-high performance cement based composites[J]. Int J Impact Eng, 2010, 37(5): 515. 120Zhang W H, Zhang Y S. Research on the static and dynamic compressive properties of high performance cementitious composite (HPCC) containing coarse aggregate [J]. Arch Civ Mech Eng, 2015, 15(3): 711. 121Rong Z D, Jiang G, Sun W, et al. Mechanical behavior and microstructure analysis of ultra-high performance steel fiber reinforced cementitious composites [J]. J Hebei Univ Technol, 2014, 43(6): 30 (in Chinese). 戎志丹,姜广,孙伟,等. 超高性能钢纤维增强水泥基复合材料的力学性能及微结构分析[J]. 河北工业大学学报, 2014, 43(6): 30. 122Zhang W H, Zhang Y S, et al. Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite [J]. J Wuhan Univ Technol (Mater Sci Ed), 2011, 26(6): 1227. 123Zhang W, Zhang Y, Zhang G. Static, dynamic mechanical properties and microstructure characteristics of ultra-high performance cementitious composites[J]. Sci Eng Compos Mater, 2012, 19(3): 237. 124Wu X T, Hu S S, Chen D X, et al. Impact compression experiment of steel fiber reinforced high strength concrete [J]. Explosion Shock Waves, 2005, 25(2): 125 (in Chinese). 巫绪涛,胡时胜,陈德兴,等. 钢纤维高强混凝土冲击压缩的试验研究[J]. 爆炸与冲击, 2005, 25(2): 125. 125Fujikake K, Uebayashi K, Ohno T, et al. Dynamic properties of steel fiber reinforced mortar under high-rates of loadings and triaxial stress states [J]. WIT Trans Built Environ, 2002, 63: 10. 126Díaz-Rubio F G, Pérez J R, Gálvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. Int J Impact Eng, 2002, 27(2): 161. 127Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling [J]. Int J Impact Eng, 2001, 25(4): 387. 128Lai J Z, Sun W. Dynamic mechanical behaviour of ultra-high performance fiber reinforced concretes [J]. J Wuhan Univ Technol (Mater Sci Ed), 2008, 23(6): 938. 129Lai J Z, Sun W. The spalling behavior of reactive powder concrete [J]. Eng Mech, 2009(1): 137 (in Chinese). 赖建中,孙伟. 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009(1): 137. 130Lai J Z, Sun W, Jiao C J, et al. Dynamic mechanical properties of ecological reactive powder concrete [J]. Ind Constr, 2004(12), 63 (in Chinese). 赖建中,孙伟,焦楚杰,等. 生态型RPC材料的动态力学性能[J]. 工业建筑, 2004(12): 63. 131Rong Z D, Sun W, Zhang Y S. Influence of steel fiber volume fraction and strain rate on spalling behavior of ultra-high performance cementitious composites [J]. J PLA Univ Sci Technol (Nat Sci Ed), 2009, 10(6): 542 (in Chinese). 戎志丹,孙伟,张云升. 钢纤维掺量和应变率对超高性能水泥基复合材料层裂的影响[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 542. 132Chen B S, Xiao Y, Huang Z Y, et al. Experimental study on the spalling strength of fiber reactive powder concrete [J]. J Hunan Univ (Nat Sci), 2009, 36(7): 12 (in Chinese). 陈柏生,肖岩,黄政宇,等. 钢纤维活性粉末混凝土动态层裂强度试验研究[J]. 湖南大学学报(自然科学版), 2009, 36(7): 12. 133Wu H, Fang Q, Chen X W, et al. Projectile penetration of ultra-high performance cement based composites at 510-1320 M/S[J]. Constr Build Mater, 2015, 74: 188. 134She W, Zhang Y S, Sun W, et al. Experimental research on anti-penetration and anti-explosion properties of green ultra-high performance fiber reinforced cement-based protective materials [J]. Chin J Rock Mech Eng, 2011, 30(S1): 2777(in Chinese). 佘伟,张云升,孙伟,等. 绿色超高性能纤维增强水泥基防护材料抗侵彻、抗爆炸试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2777. 135Rong Z D, Sun W, Zhang Y S. A study on anti-penetration characteristics of high and ultra-high performance steel fiber reinforced concrete [J]. J Ballistics, 2010, 22(3): 63 (in Chinese). 戎志丹,孙伟,张云升,等. 高与超高性能钢纤维混凝土的抗侵彻性能研究[J]. 弹道学报, 2010, 22(3): 63. 136Lai J Z, Guo X J, Zhu Y Y. Properties of ultra-high performance concrete subjected to penetration and explosion [J]. J Hebei Univ Technol, 2014, 43(6): 50 (in Chinese). 赖建中,过旭佳,朱耀勇. 超高性能混凝土抗侵彻及抗爆炸性能研究[J]. 河北工业大学学报, 2014, 43(6): 50. 137Lai J Z, Zhu Y Y, Tan J M. Experiment and simulation of ultra-high performance concrete subjected to blast by embedded explosive [J]. Eng Mech, 2016, 33(5): 193(in Chinese). 赖建中,朱耀勇,谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5): 193. 138Rong Z D, Sun W, Zhang Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. J North China Inst Water Conserv Hydroelectr Power, 2012, 33(6): 1 (in Chinese). 戎志丹,孙伟,张云升,等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究[J]. 华北水利水电学院学报, 2012, 33(6): 1. 139Zhang W H, Zhang Y S. Explosion experimental and simulation of ultra-high performance of cementitious composites [J]. Concrete, 2015(11):31 (in Chinese). 张文华,张云升. 超高性能水泥基复合材料抗爆炸试验及数值仿真分析[J]. 混凝土, 2015(11): 31. 140Alkaysi M, El-Tawil S, Liu Z, et al. Effects of silica powder and cement type on durability of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2016, 66: 47. 141Ghafari E, Arezoumandi M, Costa H, et al. Influence of nano-silica addition on durability of UHPC [J]. Constr Build Mater, 2015, 94: 181. 142Tafraoui A, Escadeillas G, Vidal T. Durability of the ultra high performances concrete containing metakaolin[J]. Constr Build Mater, 2016, 112: 980. 143Shaheen E, Shrive N G. Optimization of mechanical properties and durability of reactive powder concrete [J]. ACI Mater J, 2007, 103(6): 444. 144赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之三:收缩与裂缝,耐高温性能,渗透性与耐久性,设计指南[J]. 混凝土世界, 2013(12): 60. 145Du R Y, Huang Q W, Chen B C. Application and study of reactive powder concrete to bridge engineering [J]. World Bridges, 2013, 41(1): 69(in Chinese). 杜任远,黄卿维,陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41(1): 69. 146赵筠,廉慧珍,金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之四:工程与产品应用,价值、潜力与可持续发展[J]. 混凝土世界, 2014(1): 48. 147Graybeal B. UHPC in the U.S. highway infrastructure: experience and outlook [C]∥RILEM-fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete. France: RILEM Publications, 2009. 148Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC waffle deck panel system, including connections [R]. FHWA-HIF-13-032. US: Federal Highway Administration, 2013. 149Yoshihiro Tanaka, Koichi Maekawa, Yutaka Kameyama, et al. 12. The innovation and application of UHPFRC bridges in Japan [M]∥Designing and building with UHPFRC. John Wiley & Sons, Inc., 2013: 1298. 150Ekkehard Fehling, Kai Bunje. 10. G?rtnerplatz — bridge over ri-ver fulda in kassel: multispan hybrid UHPC-steel bridge[M]// Designing and building with UHPFRC. John Wiley & Sons, Inc., 2013: 136. 151Du R Y, Chen B C. Experimental research on the ultimate load capacity of reactive powder concrete arches [J]. Eng Mech, 2013, 30(5): 42 (in Chinese). 杜任远,陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5): 42. 152 Chen B C, Li S Y, Yu J, et al. Trial design of reactive powder concrete long span arch bridge [J]. J Changsha Commun Univ, 2009(1): 32 (in Chinese). 陈宝春,李生勇,余健,等. 大跨度活性粉末混凝土拱桥试设计[J]. 交通科学与工程, 2009(1): 32. 153 Huang Q W, Fu Y F, Xu C C, et al. Trial design research on super long span reactive powder concrete arch bridge [J]. J Nanchang Univ (Eng Technol), 2015(3): 252 (in Chinese). 黄卿维,傅元方,许春春,等. 超大跨径活性粉末混凝土拱桥试设计研究[J]. 南昌大学学报(工科版), 2015(3): 252. 154 Du R Y, Huang Q W, Chen B C. Application and study of reactive powder concrete to bridge engineering [J]. World Bridge, 2013, 41(1): 69 (in Chinese). 杜任远,黄卿维,陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41(1): 69.