Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030313-10    https://doi.org/10.11896/cldb.22030313
  无机非金属及其复合材料 |
BiOCl光催化剂的制备及应用研究综述
郝玮1,2, 王杰1, 胥生元1, 高文生3, 谢克锋1,*
1 兰州交通大学化学化工学院,兰州 730000
2 中海油服油田化学事业部塘沽作业公司,天津 300459
3 兰州大学化学化工学院,兰州 730000
A Review of Preparation and Application of BiOCl as Photocatalyst
HAO Wei1,2, WANG Jie1, XU Shengyuan1, GAO Wensheng3, XIE Kefeng1,*
1 College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
2 Tanggu Operation Company, Petrochemical Business Department, China Oilfield Services Limited, Tianjin 300459, China
3 College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 13285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯氧化铋(BiOCl)由于本身特殊的层状结构以及毒性低、制备成本较低和光催化性能良好等优点,成为光催化研究领域的一种重要材料。BiOCl的结构容易调控,可以通过掺杂和构造异质结等方法,实现对其光响应范围小、载流子易复合等缺点的改性。本文介绍了近年来BiOCl光催化材料的制备方法、改性策略、反应机理等方面的研究现状,综述了其在光催化应用(如降解污染物、CO2还原反应、光解水制氢等)方面的研究进展,并提出了该类材料未来研究的方向与可能面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝玮
王杰
胥生元
高文生
谢克锋
关键词:  氯氧化铋  改性  光催化性能  光催化应用    
Abstract: Bismuth oxychloride (BiOCl) has become important in photocatalysis research due to its unique layered structure, low toxicity, low preparation cost, and good photocatalytic properties. The structure of BiOCl is easily regulated, and it can achieve the disadvantages such as small light response range and easy carrier to compound by doping and constructing heterojunctions. This paper introduces the preparation method, modification strategy, and reaction mechanism of BiOCl photocatalytic materials in recent years. The review analyses photocatalytic applications such as degradation of pollutants, CO2 reduction reaction, and hydrolysis of water hydrogen. Further research direction of the material and possible challenges are proposed.
Key words:  bismuth oxychloride    modification    photocatalytic performance    photocatalytic application
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TQ426  
基金资助: 国家自然科学基金-青年基金(11905091);甘肃省青年科技基金(21JR7RA326);甘肃省高等学校创新基金项目(2021B-100)
通讯作者:  *谢克锋,兰州交通大学副教授、硕士研究生导师,2016年于兰州大学获得理学博士学位。2019年起任职于兰州交通大学化学化工学院,目前研究方向为功能材料设计及理论模拟。以通信作者和第一作者在Nature Communications、Chemical Engineering Journal、Composites Part B: Engineering、Materials & Design、Fuel、Sensors & Actuators: B.Chemica、Applied Surface Science、Macromolecular Rapid Communications、Chemosphere、ACS Applied Materials & Interfaces和Journal of Materials Chemistry A等国际知名期刊发表了30多篇学术论文。xiekefeng@mail.lzjtu.cn   
作者简介:  郝玮,2018年毕业于滨州学院能源化学工程专业,获得工学学士学位。现为兰州交通大学化学化工学院材料与化工硕士研究生,在谢克锋老师的指导下进行研究。目前主要研究领域为功能材料。
引用本文:    
郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
HAO Wei, WANG Jie, XU Shengyuan, GAO Wensheng, XIE Kefeng. A Review of Preparation and Application of BiOCl as Photocatalyst. Materials Reports, 2023, 37(20): 22030313-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030313  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030313
1 Ministry of Ecology and Environment. Environmental Protection, 2021, 49(11), 47(in Chinese).
生态环境部. 环境保护, 2021, 49(11), 47.
2 Lin B Q. Journal of China University of Geosciences(Social Sciences Edition), 2018, 18(2), 76(in Chinese).
林伯强. 中国地质大学学报(社会科学版), 2018, 18(2), 76.
3 He Y, Liang X X, Pan R X, et al. Chinese Agricultural Science Bulletin, 2020, 36(28), 99(in Chinese).
何宇, 梁晓曦, 潘润西, 等. 中国农学通报, 2020, 36(28), 99.
4 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
5 Carey J H, Lawrence J, Tosine H M. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6), 697.
6 Li Z H. Enhanced Photocatalytic activity of bismuth oxyhalides under visible light irradiation. Master’s Thesis, Central China Normal University, China, 2017(in Chinese).
李中华. 可见光性能增强的卤氧化铋光催化研究. 硕士学位论文, 华中师范大学, 2017.
7 Pan J B. Synthesis of bismuth oxychloride based and bismuth tungstate based composite photocatalysts for organic pollutants elimination. Master’s Thesis, Beijing University of Chemical Technology, China, 2018(in Chinese).
潘金波. 氯氧化铋基和钨酸铋基复合光催化剂的制备及其光催化降解有机污染研究. 硕士学位论文, 北京化工大学, 2018.
8 Xiang Z B, Wang Y, Zhang D, et al. Journal of Industrial & Engineering Chemistry, 2016, 40, 83.
9 Bi Q, Li Q, Su Z, et al. Colloids and Surfaces a Physicochemical and Engineering Aspects, 2019, 582, 123899.
10 Priya B, Shandilya P, Raizada P, et al. Journal of Molecular Catalysis A, Chemical, 2016, 423, 400.
11 Shao L Z. Preparation, modification and catalytic performance of BiOCl nanosheets. Master’s Thesis, Anhui University of Technology, China, 2018(in Chinese).
邵良志. BiOCl纳米片的制备、修饰及催化性能研究. 硕士学位论文, 安徽理工大学, 2018.
12 Li H, Li J, Ai Z H, et al. Angewandte Chemie, 2018, 57(1), 122.
13 Li J. Structure tuning of layered bismuth oxychloride and their photocatalytic activity enhancement. Ph. D. Thesis, Central China Normal University, China, 2016(in Chinese).
李杰. 层状氯氧化铋结构调控及其光催化活性增强. 博士学位论文, 华中师范大学, 2016.
14 Wang X N. Regullation of photogenerated carrier sepration and utilazation rate to enhance photocatalytic water splitting for hydrogen produce. Ph. D. Thesis, Shandong University, China, 2019(in Chinese).
王晓宁. 光生载流子分离和利用率调控增强光催化材料水分解产氢性能. 博士学位论文, 山东大学, 2019.
15 Tao S S. Preparation of doped bismuth oxychloride(BiOCl) and enhancement mechanism of photocatalytic degradation of dyes. Master’s Thesis, Xi’an University of Technology, China, 2020(in Chinese).
陶莎莎. 掺杂氯氧化铋(BiOCl)的制备及光催化降解染料性能增强机制研究. 西安理工大学, 硕士学位论文, 2020.
16 Sun Y N, Xia Y N. Cheminform, 2002, 14, 833.
17 Bai S, Li X, Kong Q, et al. Advanced Materials, 2015, 27(22), 3444.
18 Zhang X, Ai Z, Jia F, et al. The Journal of Physical Chemistry C, 2008, 112(3), 747.
19 Xiong J Y, Cheng G, Li G F, et al. RSC Advances, 2011, 1(8), 1542.
20 Xiong J Y, Cheng G, Qin F, et al. Chemical Engineering Journal, 2013, 220, 228.
21 Yao L, Yang H, Chen Z S, et al. Chemosphere, 2020, 273, 128576.
22 Sarkar R, Das D, Mitra A, et al. Materials Today: Proceedings, 2019, 18, 1086.
23 Zhang D, Tan G Q, Wang M, et al. Applied Surface Science, 2020, 526, 146689.
24 Long Z Q, Xian G, Zhang G M, et al. Chinese Journal of Catalysis, 2020, 41(3), 464.
25 Li X Y, Zhu C Z, Song Y, et al. RSC Advances, 2017, 7(17), 10235.
26 Wang C Y, Zhang Y J, Wang W K, et al. Applied Catalysis, B: Environmental, 2018, 221, 320.
27 Wang J H, Zhang Z H. Optik, 2020, 204, 16149.
28 Tekin G, Ersoz G, Atalay S, et al. Journal of Environmental Management, 2018, 228, 441.
29 Bi Q L, Li Q, Su Z P, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123899.
30 Peng H, Chan C K, Meister S, et al. Chemistry of Materials, 2009, 21(2), 247.
31 Zhang X C, Liu X X, Fan C M, et al. Applied Catalysis, B: Environmental, 2013, 132, 332.
32 Poznyak S K, Kulak A I. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1990, 278(1), 227.
33 Zhang X F, Li R, Hu Y Y, et al. Journal of Synthetic Crystals, 2016, 45(10), 2364(in Chinese).
张小芳, 李瑞, 胡颖媛, 等. 人工晶体学报, 2016, 45(10), 2364.
34 Wang L, Wang Z J, Wang Y T, et al. Journal of Environmental Science, 2015(1), 7(in Chinese).
王磊, 王志军, 王玉廷, 等. 环境科学学报, 2015(1), 7.
35 Wu S J, Wang C, Cui Y F, et al. Materials Letters, 2010, 64(2), 115.
36 Lei Y, Wang G, Song S, et al. CrystEngComm, 2009, 11(9), 1857.
37 Wang H, Wan L, Huang K, et al. Journal of Nanoscience and Nanotechnology, 2017, 17(4), 2601.
38 Jiang Z Y, Liu Y Y, Jing T, et al. RSC Advances, 2015, 5(58), 47261.
39 Long Z Q, Song H, Zhang G M. Materials Reports, 2021, 35(5), 5067(in Chinese).
龙泽清, 宋慧, 张光明. 材料导报, 2021, 35(5), 5067.
40 Xia J X, Li X, Zhang J, et al. CrystEngComm, 2013, 15(46), 10132.
41 Zhong X, Zhang K X, Wu D, et al. Chemical Engineering Journal, 2020, 383, 123148.
42 Xu D, Feng H, Dong Y, et al. Advanced Materials Interfaces, 2020, 7(15), 2000548.
43 Zhong S, Wang X, Wang Y, et al. Journal of Alloys and Compounds, 2020, 843, 155598.
44 Cao J Y, Li J J, Chu W, Cen W L, et al. Chemical Engineering Journal, 2020, 400, 125813.
45 Ma W, Dong X A, Wang Y, et al. Applied Surface Science, 2022, 578, 152002.
46 Feng H, Xu D, Wang Q, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 396.
47 Hsieh P A, Chen P J, Lyu L M, et al. ACS Applied Materials and Interfaces, 2021, 13(49), 58799.
48 Li Z, Ma B, Zhang X, et al. Environmental Research, 2019, 182, 109077.
49 Zhang S J, Wang D Y, Song L Y. et al. Materials Chemistry and Physics, 2016, 173, 298.
50 Yu C, He H, Fan Q, et al. Science of the Total Environment, 2019, 694, 133727.
51 Heidari S, Haghighi M, Shabani M. Journal of Cleaner Production, 2020, 259, 120679.
52 Chai S Y, Yong J K, Jung M H, et al. Journal of Catalysis, 2009, 262(1), 144.
53 Yu X, Yang J J, Ye K, et al. Inorganic Chemistry Communications, 2016, 71, 45.
54 Yu C L, Chen J C, Zhou W Q, et al. Material Research Innovations, 2014, 19(1), 54.
55 Yang C Y, Li F, Zhang M, et al. Journal of Molecular Catalysis A:Chemical, 2016, 423, 1.
56 Cheng H F, Huang B B, Qin X Y, et al. Chemical Communications, 2012, 48, 97.
57 Dang J, Guo J, Wang L, et al. Journal of Alloys and Compounds, 2022, 893, 162251.
58 Jiang R R, Lu G H, Nkoom M, et al. Chemical Engineering Journal, 2020, 400, 125913.
59 Li S J, Chen J L, Liu Y P, et al. Journal of Alloys and Compounds, 2019, 781, 582.
60 Eshaq G, Wang S, Sun H, et al. Separation and Purification Technology, 2020, 231, 115915.
61 He Z, Shi Y, Chao G, et al. Journal of Physical Chemistry C, 2014, 118(1), 389.
62 He R A, Cao S W, Yu J G, et al. Acta Physico-Chimica Sinica, 2016, 32(12), 2841.
63 Contreras D, Melin V, Pérez-González G. Green photocatalysts, Springer, Chile, 2020, pp. 235.
64 Wang Z W, Chen M, Huang D L, et al. Chemical Engineering Journal, 2019, 374, 1025.
65 Jin X L, Ye L Q, Wang H, et al. Applied Catalysis B:Environmental, 2015, 165, 668.
66 Cui P Z, Wang J L, Wang Z M, et al. Nano Research, 2016, 9(003), 593.
67 Zhao M, Dong L F, Zhang Q. et al. Powder Diffraction, 2016, 31(1), 2.
68 Guo J Y, Li X, Liang J, et al. Coordination Chemistry Reviews, 2021, 443, 214033.
69 Ji X X, Zhao Q H, Wang A H. et al. Inorganic Chemistry Communications, 2021, 132, 108815.
70 Wu H, Liu X, Xu H, et al. Catalysis Science and Technology, 2021, 11(15), 5119.
71 Li Y J, Wang Q, Liu B C, et al. Applied Surface Science, 2015, 349, 957.
72 Zou Z W, Xu H M, Li D Y, et al. Applied Surface Science, 2019, 463, 1011.
73 Bao L, Yuan Y J. Dalton Transactions, 2020, 49(33), 11536.
74 Sun L B, Hu M Z, Liang M M, et al. Chemical Industry and Engineering Progress, DOI:10.16085/j.issn.1000-6613.2021-2347(in Chinese).
孙凌波, 胡明忠, 梁明明, 等. 化工进展. DOI:10.16085/j.issn.1000-6613.2021-2347.
75 Yan J, Jin B, Zhao P, et al. Inorganic Chemistry Frontiers, 2021, 8, 777.
76 Pare B, Sarwan B, Jonnalagadda S B, et al. Applied Surface Science, 2011, 258(1), 247.
77 Cao T T, Cui H, Zhang Q W, et al. Applied Surface Science, 2021, 559, 149938.
78 Zhang T T, Chen L F, Jiang T, et al. Materials Today Communications, 2021, 26, 102145.
79 Zhang L, Han Z K, Wang W Z, et al. Chemistry A European Journal, 2015, 21(50), 18089.
80 Lee G J, Zheng Y C, Wu J J, et al. Catalysis Today, 2018, 307, 197.
81 Ji X X, Zhao Q H, Wang A H, et al. Inorganic Chemistry Communications, 2021, 132, 108815.
82 Maimaitizi H, Abulizi A, Kadeer K, et al. Applied Surface Science, 2020, 502, 144083.
83 Wu S Q, Huang Z A, Li Q C, et al. Materials Reports, 2021, 35(6), 6001(in Chinese).
伍书祺, 黄泽皑, 李晴川, 等. 材料导报, 2021, 35(6), 6001.
84 Song J K, Zhang Z, Zhi S S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 380.
85 Zhou Y Y, Wang H P, Liu X C, et al. Applied Catalysis B: Environmental, 2021, 294, 120265.
86 Wang W Y, Wen C X, Guan J, et al. Journal of Industrial and Engineering Chemistry, 2021, 103, 305.
87 Shen T, Shi X K, Guo J X, et al. Chemical Engineering Journal, 2021, 408, 128014.
88 Wang M, Tan G Q, Feng S J, et al. Journal of Hazardous Materials, 2021, 408, 124897.
89 Li H, Shang J, Shi J G, et al. Nanoscale, 2016, 8(4), 1986.
90 Li J, Li H, Zhang G M. et al. Accounts of Chemical Research, 2017, 50(1), 112.
91 Hao L, Feng Q, Yang Z P, et al. Journal of the American Chemical Society, 2017, 139(9), 3513.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[3] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[4] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[7] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[8] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[9] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[12] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[13] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[14] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[15] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed