Effect of Rare Earth Yttrium on Temperature-sensitive Property of Eu(TTA)3 phen/PMMA
SONG Yajiao, YU Jia, WU Weibin, YU Hongcui, LIU Jinglin*
Inner Mongolia Key Laboratory of Chemistry for Natural Products and Synthesis for Functional Molecules, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
Abstract: The temperature sensitive paint (TSP) technology is widely used in the temperature distribution measurement of large area solid field, especially for the in-depth research in the mechanical behavior of complex flow gas around the aircraft, because of its advantages of non-contact, omni-directional measurement, easy manufacture and use. In this work, we synthesized the rare earth iron (Y3+) doped Eu(TTA)3 phen/PMMA temperature sensitive paint successfully based on the probe molecules of Y3+doped Eu(TTA)3phen and polymethyl methacrylate(PMMA). The structure of probe molecules and the fluorescence properties of TSP were also characterized. The result show that the optimal ratio of rare earth ions is 0.5∶0.5, both of rare earth irons are coordinated with ligands and the doping of Y3+ do not affect the structure of Eu(TTA)3 phen. Y3+ has a gain effect on the fluorescent emission of Eu(TTA)3 phen/PMMA and the intensity of the strongest fluorescence emission peak (616 nm) is decreased with the increasing of temperature, which indicate that the Y3+ doped Eu (TTA)3phen/PMMA have temperature quenching properties in the temperature range of 40—80 ℃. What’s more, the doping of Y3+ can improve the change rate of the fluorescent intensity and the temperature measurement sensitivity. Hence, as a new thermal sensitive material, the Y3+ doped Eu(TTA)3phen/PMMA temperature sensitive paint has potential applications in photoelectric devices and other aspects.
1 Tang J, Sun J, Zhou C, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(8), 1485(in Chinese). 唐娟, 孙晶, 周晨, 等. 无机化学学报, 2020, 36(8), 1485. 2 Tang Y Y, Li L B, Wang C, et al. Materials Reports, 2022, 36(19), 21050037(in Chinese). 唐洋洋, 李林波, 王超, 等. 材料导报, 2022, 36(19), 21050037. 3 Hu M, Zhang Q Y, Luo L, et al. Contemporary Chemical Industry, 2022, 51(2), 327. 胡敏, 张琼瑶, 罗伦, 等. 当代化工, 2018, 36(2), 192. 4 Sun M T, Lu S Y, Sun J, et al. Imagine Science and Photochemistry, 2018, 36(2), 192. 孙梦婷, 陆思宇, 孙晶, 等. 影像科学与光化学, 2018, 36(2), 192. 5 Zhang X L, Ma S Y, Lu C L. Journal of the Chinese Ceramic Society, 2021, 42(11), 1781. 张晓琳, 马思阳, 卢春兰. 硅酸盐学报, 2021, 42(11), 1781. 6 Bi G, Sun J, Zhou C, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(2), 203(in Chinese). 毕冠, 孙晶, 周晨, 等. 无机化学学报, 2019, 35(2), 203. 7 Sun M T, Sun J, Wang Y, et al. Journal of the Chinese Society of Rare Earths, 2017, 35(4), 469(in Chinese). 孙梦婷, 孙晶, 王媛, 等. 中国稀土学报, 2017, 35(4), 469. 8 Yuan C K, Jiang Z L. Chinese Journal of Theoretical and Applied Mechanicsy, 2022, 54(1), 48(in Chinese). 苑朝凯, 姜宗林. 力学学报, 2022, 54(1), 48. 9 Huang H, Xiong J, Liu X, et al. Journal of Experiments in Fluid Mechanics, 2019, 33(2), 79(in Chinese). 黄辉, 熊健, 刘祥, 等. 实验流体力学, 2019, 33(2), 79. 10 Huo J J, Yi S H, Niu H B, et al. Physics of Gases, DOI:10.19527/j.cnki.2096-1642.0906(in Chinese). 霍俊杰, 易仕和, 牛海波, 等. 气体物理, DOI:10.19527/j.cnki.2096-1642.0906. 11 Lu S Y, Liu X R, Bi G, et al. Chinese Journal of Inorganic Chemistry, 2018, 34(4), 683(in Chinese). 陆思宇, 刘旭日, 毕冠, 等. 无机化学学报, 2018, 34(4), 683. 12 Li W, Wu X, Xu L J. New Chemical Materials, 2021, 10(1), 113. 李维, 吴霄, 许立君. 化工新型材料, 2021, 10(1), 113. 13 Sun M T, Lu S Y, Sun J, et al. Chinese Journal of Inorganic Chemistry, 2018, 33(7), 1217(in Chinese). 孙梦婷, 陆思宇, 孙晶, 等. 无机化学学报, 2018, 33(7), 1217. 14 Song H H, Sun J, Pan L, et al. Journal of the Chinese Society of Rare Earths, 2015, 33(1), 33(in Chinese). 宋欢欢, 孙晶, 潘柳, 等. 中国稀土学报, 2015, 33(1), 33. 15 Zhang M. Preparation and study on properties of probe molecules of different fluorescence intensity and temperature sensitive paints. Master’s Thesis, Changchun University of Science and Technology, China, 2015. 张敏. 荧光强度不同的探针分子及其温敏漆的制备与性能研究. 硕士学位论文, 长春理工大学, 2015.