Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040012-5    https://doi.org/10.11896/cldb.22040012
  高分子与聚合物基复合材料 |
稀土钇对Eu(TTA)3phen/PMMA温敏特性的影响
宋亚娇, 于佳, 吴伟斌, 于洪翠, 刘景林*
内蒙古民族大学化学与材料学院,内蒙古自治区天然产物化学及功能分子合成重点实验室,内蒙古 通辽 028000
Effect of Rare Earth Yttrium on Temperature-sensitive Property of Eu(TTA)3 phen/PMMA
SONG Yajiao, YU Jia, WU Weibin, YU Hongcui, LIU Jinglin*
Inner Mongolia Key Laboratory of Chemistry for Natural Products and Synthesis for Functional Molecules, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 5157KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 温敏漆测温技术因具有非接触式、全方位测量、制造以及使用方便简单等优点被广泛应用于大面积固体场温度分布测量,尤其是对飞行器周围复杂流动气体力学行为的深入研究。本工作以稀土钇离子(Y3+)掺杂的噻吩甲酰基三氟丙酮邻菲罗啉铕配合物(Eu(TTA)3phen)为探针分子,以聚甲基丙烯酸甲酯(PMMA)为漆基合成了Y3+掺杂Eu(TTA)3phen/PMMA温敏漆,并对探针分子的结构和温敏漆的光学性质进行了研究。研究结果表明,Eu3+和Y3+的最佳配比为0.5∶0.5(物质的量比),稀土离子与配体配位成键,Y3+的掺杂未影响Eu(TTA)3phen结构;Y3+对Eu(TTA)3phen/PMMA温敏漆荧光发射具有增益作用;Y3+掺杂Eu(TTA)3phen/PMMA温敏漆的最强荧光发射峰(616 nm)强度随着温度升高而减弱,说明温度为40~80 ℃时,Y3+掺杂Eu(TTA)3phen/PMMA温敏漆具有温度猝灭性质。此外,Y3+的掺杂能够提高温敏漆的相对荧光强度变化率及测温灵敏度,因此,Y3+掺杂Eu(TTA)3phen/PMMA温敏漆作为一种新型热敏材料,在光电器件等方面具有潜在应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋亚娇
于佳
吴伟斌
于洪翠
刘景林
关键词:  温敏漆  稀土离子  探针分子    
Abstract: The temperature sensitive paint (TSP) technology is widely used in the temperature distribution measurement of large area solid field, especially for the in-depth research in the mechanical behavior of complex flow gas around the aircraft, because of its advantages of non-contact, omni-directional measurement, easy manufacture and use. In this work, we synthesized the rare earth iron (Y3+) doped Eu(TTA)3 phen/PMMA temperature sensitive paint successfully based on the probe molecules of Y3+doped Eu(TTA)3phen and polymethyl methacrylate(PMMA). The structure of probe molecules and the fluorescence properties of TSP were also characterized. The result show that the optimal ratio of rare earth ions is 0.5∶0.5, both of rare earth irons are coordinated with ligands and the doping of Y3+ do not affect the structure of Eu(TTA)3 phen. Y3+ has a gain effect on the fluorescent emission of Eu(TTA)3 phen/PMMA and the intensity of the strongest fluorescence emission peak (616 nm) is decreased with the increasing of temperature, which indicate that the Y3+ doped Eu (TTA)3phen/PMMA have temperature quenching properties in the temperature range of 40—80 ℃. What’s more, the doping of Y3+ can improve the change rate of the fluorescent intensity and the temperature measurement sensitivity. Hence, as a new thermal sensitive material, the Y3+ doped Eu(TTA)3phen/PMMA temperature sensitive paint has potential applications in photoelectric devices and other aspects.
Key words:  temperature sensitive paint    rare earth ion    probe molecules
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  O614.33  
基金资助: 内蒙古自然科学基金(2023LHMS02005; 2019BS02009);内蒙古民族大学博士科研启动基金(BS397; BS425)
通讯作者:  *刘景林,1992年毕业于东北师范大学化学系,获理学学士学位,1997年毕业于东北师范大学化学学院物理化学专业,获理学硕士学位,2006年毕业于吉林大学化学学院物理化学专业,获理学博士学位。现为内蒙古民族大学化学与材料学院教授,主要研究领域为有机合成化学,近年来在国内外刊物发表学术论文30余篇,其中SCI收录论文12篇,主持国家自然科学基金1项,内蒙古自然科学基金1项,内蒙古科技计划项目1项。jlliu@vip.163.com   
作者简介:  宋亚娇,2009年7月毕业于包头师范学院化学学院应用化学专业,获得理学学士学位;2013年4月毕业于长春理工大学化学与环境工程学院物理化学专业,获得理学硕士学位;2016年12月毕业于东北师范大学化学学院高分子化学与物理专业,获得理学博士学位。现为内蒙古民族大学化学与材料学院讲师,主要研究领域为光电功能材料。近年来,在国内外刊物发表论文10余篇,其中SCI收录6篇,EI收录论文1篇,出版学术专著1部;主持内蒙古自然科学基金项目2项,内蒙古民族大学博士科研启动项目基金1项,内蒙古自治区碳材料重点实验室开放课题1项。
引用本文:    
宋亚娇, 于佳, 吴伟斌, 于洪翠, 刘景林. 稀土钇对Eu(TTA)3phen/PMMA温敏特性的影响[J]. 材料导报, 2023, 37(20): 22040012-5.
SONG Yajiao, YU Jia, WU Weibin, YU Hongcui, LIU Jinglin. Effect of Rare Earth Yttrium on Temperature-sensitive Property of Eu(TTA)3 phen/PMMA. Materials Reports, 2023, 37(20): 22040012-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040012  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040012
1 Tang J, Sun J, Zhou C, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(8), 1485(in Chinese).
唐娟, 孙晶, 周晨, 等. 无机化学学报, 2020, 36(8), 1485.
2 Tang Y Y, Li L B, Wang C, et al. Materials Reports, 2022, 36(19), 21050037(in Chinese).
唐洋洋, 李林波, 王超, 等. 材料导报, 2022, 36(19), 21050037.
3 Hu M, Zhang Q Y, Luo L, et al. Contemporary Chemical Industry, 2022, 51(2), 327.
胡敏, 张琼瑶, 罗伦, 等. 当代化工, 2018, 36(2), 192.
4 Sun M T, Lu S Y, Sun J, et al. Imagine Science and Photochemistry, 2018, 36(2), 192.
孙梦婷, 陆思宇, 孙晶, 等. 影像科学与光化学, 2018, 36(2), 192.
5 Zhang X L, Ma S Y, Lu C L. Journal of the Chinese Ceramic Society, 2021, 42(11), 1781.
张晓琳, 马思阳, 卢春兰. 硅酸盐学报, 2021, 42(11), 1781.
6 Bi G, Sun J, Zhou C, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(2), 203(in Chinese).
毕冠, 孙晶, 周晨, 等. 无机化学学报, 2019, 35(2), 203.
7 Sun M T, Sun J, Wang Y, et al. Journal of the Chinese Society of Rare Earths, 2017, 35(4), 469(in Chinese).
孙梦婷, 孙晶, 王媛, 等. 中国稀土学报, 2017, 35(4), 469.
8 Yuan C K, Jiang Z L. Chinese Journal of Theoretical and Applied Mechanicsy, 2022, 54(1), 48(in Chinese).
苑朝凯, 姜宗林. 力学学报, 2022, 54(1), 48.
9 Huang H, Xiong J, Liu X, et al. Journal of Experiments in Fluid Mechanics, 2019, 33(2), 79(in Chinese).
黄辉, 熊健, 刘祥, 等. 实验流体力学, 2019, 33(2), 79.
10 Huo J J, Yi S H, Niu H B, et al. Physics of Gases, DOI:10.19527/j.cnki.2096-1642.0906(in Chinese).
霍俊杰, 易仕和, 牛海波, 等. 气体物理, DOI:10.19527/j.cnki.2096-1642.0906.
11 Lu S Y, Liu X R, Bi G, et al. Chinese Journal of Inorganic Chemistry, 2018, 34(4), 683(in Chinese).
陆思宇, 刘旭日, 毕冠, 等. 无机化学学报, 2018, 34(4), 683.
12 Li W, Wu X, Xu L J. New Chemical Materials, 2021, 10(1), 113.
李维, 吴霄, 许立君. 化工新型材料, 2021, 10(1), 113.
13 Sun M T, Lu S Y, Sun J, et al. Chinese Journal of Inorganic Chemistry, 2018, 33(7), 1217(in Chinese).
孙梦婷, 陆思宇, 孙晶, 等. 无机化学学报, 2018, 33(7), 1217.
14 Song H H, Sun J, Pan L, et al. Journal of the Chinese Society of Rare Earths, 2015, 33(1), 33(in Chinese).
宋欢欢, 孙晶, 潘柳, 等. 中国稀土学报, 2015, 33(1), 33.
15 Zhang M. Preparation and study on properties of probe molecules of different fluorescence intensity and temperature sensitive paints. Master’s Thesis, Changchun University of Science and Technology, China, 2015.
张敏. 荧光强度不同的探针分子及其温敏漆的制备与性能研究. 硕士学位论文, 长春理工大学, 2015.
[1] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[2] 冯燕霞, 李北罡. 磁性Y/CTS/FA复合吸附剂的制备及对直接湖蓝5B的吸附[J]. 材料导报, 2021, 35(6): 6028-6034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed