Abstract: Atomic layer deposition (ALD) is a technology of vapor-phase deposition of thin films. Based on the mechanism of continuous self-limiting reaction of surface chemical saturation adsorption, atomic level conformal growth can be achieved on a variety of substrates during ALD process. Relying on this unique advantage, ALD has become an important technology in the advanced process of semiconductor, providing an important technical support for the device process to achieve atomic size and accuracy. Different from the traditional chemical vapor deposition (CVD) and physical vapor deposition (PVD), ALD growths thin film at lower temperature with excellent step coverage, precise controllability of thickness and composition at atomic scale. Molecular layer deposition (MLD) is a kind of vapor-phase deposition method similar to ALD, which can accurately control the thickness and composition of the prepared polymer films, and with excellent conformality as well. This review introduces the technical principle and characteristics of ALD firstly, and then summaries the application examples of ALD in advanced semiconductor process, including high-k dielectric materials, seed layer materials, diffusion barrier materials, spacer materials, and water vapor barrier mate-rials. Subsequently, the MLD technology and the application of inorganic-organic hybrid films deposited by ALD/MLD combination technology in dielectric materials and water vapor barrier materials are introduced. Finally, a summary is given, and it is pointed out that ALD and MLD techno-logy will play an increasingly important role in advanced chip device process.
通讯作者:
* 赵波,湖北九峰山实验室主任工程师。博士毕业于根特大学(Ghent University)固体科学系物理学专业。2021年11月加入湖北九峰山实验室,主要从事半导体先进工艺的开发与研究,发表论文10余篇,包括Journal of Energy Chemistry、Journal of Chemistry Materials A、ACS Applied Materials & Interfaces、Advanced Materials Interfaces等。bozhaocas@hotmail.com
引用本文:
赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
ZHAO Bo, LIU Jun. Atomic/Molecular Layer Deposition Technology and Its Application in Advanced Process of Semiconductor. Materials Reports, 2024, 38(20): 23030081-12.
1 Senzaki Y, Choi K, Kirsch P D, et al. AIP Conference Proceedings, 2005, 788 (1), 69. 2 Zhao C, Xiang J. Applied Science, 2019, 9 (11), 2388. 3 Gougousi T. Progress in Crystal Growth and Characterization of Materials, 2016, 62 (4), 1. 4 Östling M, Henkel C, Litta E D, et al. In:2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology. Xi’an, China, 2012, pp.1. 5 Cremers V, Puurunen R L, Dendooven J. Applied Physical Review, 2019, 6 (2), 021302. 6 Besling W, Satta A S, Schuhmacher J, et al. In:Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat.No.02EX519).Burlingame, CA, USA, 2002, pp.288. 7 Abegunde O O, Akinlabi E T, Oladijo O P, et al. AIMS Materials Science, 2019, 6 (2), 174. 8 Mallick B C, Hsieh C T, Yin K M, et al. ECS Journal of Solid State Science and Technology, 2019, 8 (4), 55. 9 Crowell J E. Journal of Vacuum Science & Technology A, 2003, 21 (5), 88. 10 Detavernier C, Dendooven J, Sree S P, et al. Chemical Society Review, 2011, 40 (11), 5242. 11 George S M. Chemical Review, 2010, 110 (1), 111. 12 Johnson R W, Hultqvist A, Bent S F, et al. Materials Today, 2014, 17 (5), 236. 13 Sheng J Z, Lee J H, Choi W H, et al. Journal of Vacuum Science & Technology A, 2018, 36 (6), 060801. 14 Suntola T, Antson J.United States Patent, 4058430, 1977 15 Puurunen R L. Chemical Vapor Deposition 2014, 20 (10-11-12), 332. 16 Parsons G N, Elam J W, George S M, et al. Journal of Vacuum Science & Technology A, 2013, 31 (5), 050818. 17 Fang G Y, Xu L N, Cao Y Q, et al. Coordination Chemistry Reviews, 2016, 322, 94. 18 Mackus A J M, Schneider J R, MacIsaac C, et al. Chemistry of Materials, 2019, 31 (4), 1142. 19 Ramachandran R K, Dendooven J, Filez M, et al. ECS Transactions. 2017, 80 (3), 97. 20 Granneman E, Fischer P, Pierreux D, et al. Surface Coating Technology, 2007, 201 (22), 8899. 21 Coll M, Napari M. APL Materials, 2019, 7 (11), 110901. 22 Van Ommen J R, Goulas A. Materials Today Chemistry, 2019, 14, 100183. 23 Zhao B.Atomic layer deposition of metal oxides for applications in lithiumion and lithium metal batteries.Ph.D.Thesis, Ghent University, Belgium, 2021. 24 Batra N, Gope J, Vandana V, et al. AIP Advances, 2015, 5 (6), 067113. 25 Chen L, Chen K S, Chen X, et al. ACS Applied Materials & Interfaces, 2018, 10 (32), 26972. 26 Arts K, Thepass H, Verheijen M A, et al. Chemistry of Materials, 2021, 33 (13), 5002. 27 Gutsche M, Seidl H, Hecht T, et al. Future Fab International, 2003, 14. 28 Lu J, Elam J W, Stair P C. Surface Science Reports, 2016, 71 (2), 410. 29 Ribes G, Mitard J, Denais M, et al. IEEE Transactions on Reliability, 2005, 5 (1), 5. 30 Jeon W. Journal of Materials Research, 2020, 35 (7), 775. 31 Palumbo F, Wen C, Lombardo S, et al. Advanced Functional Materials, 2020, 30 (18), 1900657. 32 Aoulaiche M, Simoen E, Ritzenthaler R, et al.2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).Bucharest, Romania, 2013, pp.190. 33 Lintanf-Salaün A, Mantoux A, Djurado E, et al. Microelectronic Engineering, 2010, 87 (3), 373. 34 Gupta R, Vaid R. IEEE Transaction on Electron Devices, 2021, 68 (6), 2625. 35 Robertson J. Reports on Progress in Physics, 2005, 69 (2), 327. 36 Atanassova E, Paskaleva A. Microelectronics Reliability, 2007, 47 (6), 913. 37 Kawahara T, Torii K, Fukuda S, et al. MRS Proceedings, 2011, 745, N5. 38 Tsuzumitani A, Okuno Y, Shibata J, et al. Japanese Journal of Applied Physics, 2000, 39, 2073. 39 Kwon D S, An C H, Kim S H, et al. Journal of Materials Chemistry C, 2020, 8 (21), 6993. 40 Kim S K, Lee S W, Han J H, et al. Advanced Functional Materials, 2010, 20 (18), 2989. 41 Klootwijk J H, Jinesh K B, Dekkers W, et al. IEEE Electron Device Letters, 2008, 29 (7), 740. 42 Gall D, Cha J J, Chen Z, et al. MRS Bulletin 2021, 46 (10), 959. 43 Moon D Y, Kwon T S, Kang B W, et al.2010 3rd International Nanoelectronics Conference (INEC).Hongkong, China 2010, pp.450. 44 Moon D Y, Han D S, Shin S Y, et al. Thin Solid Films 2011, 519 (11), 3636. 45 Waechtler T, Ding S F, Hofmann L, et al. Microelectronic Engineering, 2011, 88 (5), 684. 46 Brain R. In:2016 IEEE International Electron Devices Meeting (IEDM).San Francisco, CA, USA.2016, pp.9.3.1 47 Li Z, Tian Y, Teng C, et al. Materials, 2020, 13 (21), 5049. 48 Kim J B, Nandi D K, Kim T H, et al. Thin Solid Films, 2019, 685, 393. 49 Sim H S, Kim S I, Jeon H, et al. Japanese Journal of Applied Physics, 2003, 42, 6359. 50 Kim H, Kellock A J, Rossnagel S M, et al. Journal of Applied Physics, 2002, 92 (12), 7080. 51 Kim H, Detavenier C, Straten O, et al. Journal of Applied Physics, 2005, 98 (1), 014308. 52 Furuya A, Tsuda H, Ogawa S. Journal of Vacuum Science & Technology B, 2005, 23 (3), 979. 53 Consiglio S, Yu K, Dey S, et al. ECS Transactions, 2015, 69 (7), 181. 54 Dey S, Yu K H, Consiglio S, et al. Journal of Vacuum Science & Technology A, 2017, 35 (3), 03E109. 55 Mackus A J M, Bol A A, Kessels W M M. Nanoscale, 2014, 6 (19), 10941. 56 Mameli A, Merkx M J M, Karasulu B, et al. SPIE the International Society for Optics and Photonics, DOI:10.1117/2.1201604.006378. 57 Carcia P F, McLean R S, Reilly M H, et al. Applied Physics Letters, 2006, 89 (3), 031915. 58 Yang Y Q, Duan Y, Chen P, et al. Journal of Physical Chemistry C, 2013, 117 (39), 20308. 59 Meyer J, Görrn P, Bertram F, et al. Advanced Materials, 2009, 21 (18), 1845. 60 Langereis E, Creatore M, Heil S B S, et al. Applied Physics Letters, 2006, 89 (8), 081915. 61 Jung H, Choi H, Jeon H, et al. Journal of Applied Physics, 2013, 114 (17), 173511. 62 Jung H, Jeon H, Choi, H, et al. Journal of Applied Physics, 2014, 115 (7), 073502. 63 Lee S, Choi H, Shin S, et al. Current Applied Physics, 2014, 14 (4), 552. 64 Meng X. Journal of Materials Chemistry A, 2017, 5 (35), 18326. 65 Lee B H, Yoon B, Abdulagatov A I, et al. Advanced Functional Materials, 2013, 23 (5), 532. 66 Zhao Y, Sun X A. ACS Energy Letters, 2018, 3, 899. 67 Sundberg P, Karppinen M. European Journal of Inorganic Chemistry, 2014, 2014 (6), 968. 68 Zhao Y, Zhang L, Liu J, et al. Chemical Society Review, 2021, 50 (6), 3889. 69 Sundberg P, Karppinen M. Beilstein Journal of Nanotechnology, 2014, 5 (1), 1104. 70 Salmi L D, Puukilainen E, Vehkamäki M, et al. Chemical Vapor Deposition, 2009, 15 (7-9), 221. 71 Jen S H, Lee B H, George S M, et al. Applied Physics Letters, 2012, 101 (23), 234103. 72 Chen Z, Wang H, Wang X, et al. Scientific Reports, 2017, 7 (1), 40061.