Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23030081-12    https://doi.org/10.11896/cldb.23030081
  无机非金属及其复合材料 |
原子层/分子层沉积技术及其在半导体先进工艺中的应用
赵波*, 柳俊
湖北九峰山实验室,武汉 430206
Atomic/Molecular Layer Deposition Technology and Its Application in Advanced Process of Semiconductor
ZHAO Bo*, LIU Jun
Hubei Jiufengshan Laboratory, Wuhan 430206, China
下载:  全 文 ( PDF ) ( 7005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 原子层沉积是一种气相沉积薄膜的技术,基于表面化学饱和吸附的连续自限反应的机理,薄膜沉积过程可以在各式各样的基底上实现原子级的保形性生长。凭借这一优势,原子层沉积成为半导体先进工艺制程中的重要技术,为实现原子级尺寸和精度的器件工艺提供了重要技术支撑。与传统的化学气相沉积和物理气相沉积不同,原子层沉积在低生长温度下制备的薄膜具有良好的台阶覆盖率、原子尺度上厚度的精准可控性和成分均匀性。分子层沉积是一种类似于原子层沉积的气相沉积技术,它可以精确控制所制备聚合物薄膜的厚度和组成,且同样具有优异的保形性,是一种制备聚合物薄膜的新兴技术。本文首先介绍了原子层沉积的技术原理和特征,然后结合原子层沉积的特征优势列举了原子层沉积在半导体先进工艺制程中应用的例子,包括用于制备高k介质层材料、籽晶层材料、扩散阻挡层材料、间隔层材料、水汽阻隔层材料。后续介绍了分子层沉积技术原理和原子层/分子层沉积组合技术制备的无机-有机杂化薄膜在介电材料和水汽阻隔材料中的应用,最后进行了总结并指出原子层沉积和分子层沉积技术将在芯片器件高端工艺中扮演越来越重要的角色。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵波
柳俊
关键词:  原子层沉积  分子层沉积  半导体  先进工艺  薄膜    
Abstract: Atomic layer deposition (ALD) is a technology of vapor-phase deposition of thin films. Based on the mechanism of continuous self-limiting reaction of surface chemical saturation adsorption, atomic level conformal growth can be achieved on a variety of substrates during ALD process. Relying on this unique advantage, ALD has become an important technology in the advanced process of semiconductor, providing an important technical support for the device process to achieve atomic size and accuracy. Different from the traditional chemical vapor deposition (CVD) and physical vapor deposition (PVD), ALD growths thin film at lower temperature with excellent step coverage, precise controllability of thickness and composition at atomic scale. Molecular layer deposition (MLD) is a kind of vapor-phase deposition method similar to ALD, which can accurately control the thickness and composition of the prepared polymer films, and with excellent conformality as well. This review introduces the technical principle and characteristics of ALD firstly, and then summaries the application examples of ALD in advanced semiconductor process, including high-k dielectric materials, seed layer materials, diffusion barrier materials, spacer materials, and water vapor barrier mate-rials. Subsequently, the MLD technology and the application of inorganic-organic hybrid films deposited by ALD/MLD combination technology in dielectric materials and water vapor barrier materials are introduced. Finally, a summary is given, and it is pointed out that ALD and MLD techno-logy will play an increasingly important role in advanced chip device process.
Key words:  atomic layer deposition    molecular layer deposition    semiconductor    advanced process    thin film
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TN05  
基金资助: 湖北省自然科学基金青年基金(2022CFB858)
通讯作者:  * 赵波,湖北九峰山实验室主任工程师。博士毕业于根特大学(Ghent University)固体科学系物理学专业。2021年11月加入湖北九峰山实验室,主要从事半导体先进工艺的开发与研究,发表论文10余篇,包括Journal of Energy Chemistry、Journal of Chemistry Materials A、ACS Applied Materials & Interfaces、Advanced Materials Interfaces等。bozhaocas@hotmail.com   
引用本文:    
赵波, 柳俊. 原子层/分子层沉积技术及其在半导体先进工艺中的应用[J]. 材料导报, 2024, 38(20): 23030081-12.
ZHAO Bo, LIU Jun. Atomic/Molecular Layer Deposition Technology and Its Application in Advanced Process of Semiconductor. Materials Reports, 2024, 38(20): 23030081-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030081  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23030081
1 Senzaki Y, Choi K, Kirsch P D, et al. AIP Conference Proceedings, 2005, 788 (1), 69.
2 Zhao C, Xiang J. Applied Science, 2019, 9 (11), 2388.
3 Gougousi T. Progress in Crystal Growth and Characterization of Materials, 2016, 62 (4), 1.
4 Östling M, Henkel C, Litta E D, et al. In:2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology. Xi’an, China, 2012, pp.1.
5 Cremers V, Puurunen R L, Dendooven J. Applied Physical Review, 2019, 6 (2), 021302.
6 Besling W, Satta A S, Schuhmacher J, et al. In:Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat.No.02EX519).Burlingame, CA, USA, 2002, pp.288.
7 Abegunde O O, Akinlabi E T, Oladijo O P, et al. AIMS Materials Science, 2019, 6 (2), 174.
8 Mallick B C, Hsieh C T, Yin K M, et al. ECS Journal of Solid State Science and Technology, 2019, 8 (4), 55.
9 Crowell J E. Journal of Vacuum Science & Technology A, 2003, 21 (5), 88.
10 Detavernier C, Dendooven J, Sree S P, et al. Chemical Society Review, 2011, 40 (11), 5242.
11 George S M. Chemical Review, 2010, 110 (1), 111.
12 Johnson R W, Hultqvist A, Bent S F, et al. Materials Today, 2014, 17 (5), 236.
13 Sheng J Z, Lee J H, Choi W H, et al. Journal of Vacuum Science & Technology A, 2018, 36 (6), 060801.
14 Suntola T, Antson J.United States Patent, 4058430, 1977
15 Puurunen R L. Chemical Vapor Deposition 2014, 20 (10-11-12), 332.
16 Parsons G N, Elam J W, George S M, et al. Journal of Vacuum Science & Technology A, 2013, 31 (5), 050818.
17 Fang G Y, Xu L N, Cao Y Q, et al. Coordination Chemistry Reviews, 2016, 322, 94.
18 Mackus A J M, Schneider J R, MacIsaac C, et al. Chemistry of Materials, 2019, 31 (4), 1142.
19 Ramachandran R K, Dendooven J, Filez M, et al. ECS Transactions. 2017, 80 (3), 97.
20 Granneman E, Fischer P, Pierreux D, et al. Surface Coating Technology, 2007, 201 (22), 8899.
21 Coll M, Napari M. APL Materials, 2019, 7 (11), 110901.
22 Van Ommen J R, Goulas A. Materials Today Chemistry, 2019, 14, 100183.
23 Zhao B.Atomic layer deposition of metal oxides for applications in lithiumion and lithium metal batteries.Ph.D.Thesis, Ghent University, Belgium, 2021.
24 Batra N, Gope J, Vandana V, et al. AIP Advances, 2015, 5 (6), 067113.
25 Chen L, Chen K S, Chen X, et al. ACS Applied Materials & Interfaces, 2018, 10 (32), 26972.
26 Arts K, Thepass H, Verheijen M A, et al. Chemistry of Materials, 2021, 33 (13), 5002.
27 Gutsche M, Seidl H, Hecht T, et al. Future Fab International, 2003, 14.
28 Lu J, Elam J W, Stair P C. Surface Science Reports, 2016, 71 (2), 410.
29 Ribes G, Mitard J, Denais M, et al. IEEE Transactions on Reliability, 2005, 5 (1), 5.
30 Jeon W. Journal of Materials Research, 2020, 35 (7), 775.
31 Palumbo F, Wen C, Lombardo S, et al. Advanced Functional Materials, 2020, 30 (18), 1900657.
32 Aoulaiche M, Simoen E, Ritzenthaler R, et al.2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).Bucharest, Romania, 2013, pp.190.
33 Lintanf-Salaün A, Mantoux A, Djurado E, et al. Microelectronic Engineering, 2010, 87 (3), 373.
34 Gupta R, Vaid R. IEEE Transaction on Electron Devices, 2021, 68 (6), 2625.
35 Robertson J. Reports on Progress in Physics, 2005, 69 (2), 327.
36 Atanassova E, Paskaleva A. Microelectronics Reliability, 2007, 47 (6), 913.
37 Kawahara T, Torii K, Fukuda S, et al. MRS Proceedings, 2011, 745, N5.
38 Tsuzumitani A, Okuno Y, Shibata J, et al. Japanese Journal of Applied Physics, 2000, 39, 2073.
39 Kwon D S, An C H, Kim S H, et al. Journal of Materials Chemistry C, 2020, 8 (21), 6993.
40 Kim S K, Lee S W, Han J H, et al. Advanced Functional Materials, 2010, 20 (18), 2989.
41 Klootwijk J H, Jinesh K B, Dekkers W, et al. IEEE Electron Device Letters, 2008, 29 (7), 740.
42 Gall D, Cha J J, Chen Z, et al. MRS Bulletin 2021, 46 (10), 959.
43 Moon D Y, Kwon T S, Kang B W, et al.2010 3rd International Nanoelectronics Conference (INEC).Hongkong, China 2010, pp.450.
44 Moon D Y, Han D S, Shin S Y, et al. Thin Solid Films 2011, 519 (11), 3636.
45 Waechtler T, Ding S F, Hofmann L, et al. Microelectronic Engineering, 2011, 88 (5), 684.
46 Brain R. In:2016 IEEE International Electron Devices Meeting (IEDM).San Francisco, CA, USA.2016, pp.9.3.1
47 Li Z, Tian Y, Teng C, et al. Materials, 2020, 13 (21), 5049.
48 Kim J B, Nandi D K, Kim T H, et al. Thin Solid Films, 2019, 685, 393.
49 Sim H S, Kim S I, Jeon H, et al. Japanese Journal of Applied Physics, 2003, 42, 6359.
50 Kim H, Kellock A J, Rossnagel S M, et al. Journal of Applied Physics, 2002, 92 (12), 7080.
51 Kim H, Detavenier C, Straten O, et al. Journal of Applied Physics, 2005, 98 (1), 014308.
52 Furuya A, Tsuda H, Ogawa S. Journal of Vacuum Science & Technology B, 2005, 23 (3), 979.
53 Consiglio S, Yu K, Dey S, et al. ECS Transactions, 2015, 69 (7), 181.
54 Dey S, Yu K H, Consiglio S, et al. Journal of Vacuum Science & Technology A, 2017, 35 (3), 03E109.
55 Mackus A J M, Bol A A, Kessels W M M. Nanoscale, 2014, 6 (19), 10941.
56 Mameli A, Merkx M J M, Karasulu B, et al. SPIE the International Society for Optics and Photonics, DOI:10.1117/2.1201604.006378.
57 Carcia P F, McLean R S, Reilly M H, et al. Applied Physics Letters, 2006, 89 (3), 031915.
58 Yang Y Q, Duan Y, Chen P, et al. Journal of Physical Chemistry C, 2013, 117 (39), 20308.
59 Meyer J, Görrn P, Bertram F, et al. Advanced Materials, 2009, 21 (18), 1845.
60 Langereis E, Creatore M, Heil S B S, et al. Applied Physics Letters, 2006, 89 (8), 081915.
61 Jung H, Choi H, Jeon H, et al. Journal of Applied Physics, 2013, 114 (17), 173511.
62 Jung H, Jeon H, Choi, H, et al. Journal of Applied Physics, 2014, 115 (7), 073502.
63 Lee S, Choi H, Shin S, et al. Current Applied Physics, 2014, 14 (4), 552.
64 Meng X. Journal of Materials Chemistry A, 2017, 5 (35), 18326.
65 Lee B H, Yoon B, Abdulagatov A I, et al. Advanced Functional Materials, 2013, 23 (5), 532.
66 Zhao Y, Sun X A. ACS Energy Letters, 2018, 3, 899.
67 Sundberg P, Karppinen M. European Journal of Inorganic Chemistry, 2014, 2014 (6), 968.
68 Zhao Y, Zhang L, Liu J, et al. Chemical Society Review, 2021, 50 (6), 3889.
69 Sundberg P, Karppinen M. Beilstein Journal of Nanotechnology, 2014, 5 (1), 1104.
70 Salmi L D, Puukilainen E, Vehkamäki M, et al. Chemical Vapor Deposition, 2009, 15 (7-9), 221.
71 Jen S H, Lee B H, George S M, et al. Applied Physics Letters, 2012, 101 (23), 234103.
72 Chen Z, Wang H, Wang X, et al. Scientific Reports, 2017, 7 (1), 40061.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[3] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[4] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[5] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[6] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[7] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[8] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[9] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[10] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[11] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[12] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[13] 贺彤, 杨一俏, 孙伟. 铋系超导薄膜面内取向的X射线测量方法[J]. 材料导报, 2023, 37(S1): 22070253-5.
[14] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[15] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed