Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22100297-9    https://doi.org/10.11896/cldb.22100297
  无机非金属及其复合材料 |
五氧化二钒薄膜材料制备方法研究进展
杜金晶1,*, 孙晔1, 朱军1, 李倩1, 王斌1, 刘景田1, 孟晓荣2
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省膜分离技术研究院,西安 710055
Research Progress in Preparation Methods of Vanadium Pentoxide Thin Film Materials
DU Jinjing1,*, SUN Ye1, ZHU Jun1, LI Qian1, WANG Bin1, LIU Jingtian1, MENG Xiaorong2
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Film Separation Technology Research Institute, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 17333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于V5+的饱和氧化态,五氧化二钒成为钒体系中最稳定的氧化物。作为功能材料,五氧化二钒薄膜在众多科学领域有着巨大的应用潜力,因而受到越来越多的关注。这主要归功于其特殊的层状结构、高能量密度、良好的化学和热稳定性以及优异的光学和电学性能。五氧化二钒薄膜的制备方法很多,采用不同的实验方法在不同衬底上制备的五氧化二钒薄膜因化学成分和组织结构差异而造成其电学、光学性能也存在显著的差异。本文详细阐述了五氧化二钒薄膜现有的制备技术,并对五氧化二钒薄膜材料应用的发展趋势进行了展望,以期为五氧化二钒薄膜产业的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜金晶
孙晔
朱军
李倩
王斌
刘景田
孟晓荣
关键词:  五氧化二钒薄膜  溶胶-凝胶法  溅射法  喷雾热解法    
Abstract: Due to the saturated oxidation state of V5+, vanadium pentoxide becomes the most stable oxide in the vanadium system. As a functional material, vanadium pentoxide thin film has great application potential in many scientific fields and has attracted more and more attention. This is mainly attributed to its special layered structure, high energy density, good chemical and thermal stability, and excellent optical and electrical properties. Vanadium pentoxide thin films can be prepared in many ways. Using different experimental methods, the electrical and optical properties of vanadium pentoxide thin films prepared on different substrates are also significantly different due to differences in chemical composition and organizational structure. In this paper, the existing preparation technology of vanadium pentoxide thin film is described in detail, and the development trend of vanadium pentoxide thin film material application is prospected, aiming to provide reference for the development of vanadium pentoxide thin film industry.
Key words:  vanadium pentoxide thin film    sol-gel method    sputtering method    spray pyrolysis process
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TQ135.1+1  
基金资助: 陕西省科技厅区域创新能力引导计划(2022QFY10-05;2022QFY10-04)
通讯作者:  *杜金晶,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2013年东北大学有色金属冶金专业博士毕业后到西安建筑科技大学大学工作至今。目前主要从事有色金属功能材料、锂离子电池电极材料和冶金资源化利用等方面的研究工作。发表论文30余篇,包括Journal of Alloys and Compounds、Ceramics International、International Journal of Applied Ceramic Technology、Frontiers in Chemistry、Internationational Journal of Electrochemical Science等。dujinzi@xauat.edu.cn   
引用本文:    
杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
DU Jinjing, SUN Ye, ZHU Jun, LI Qian, WANG Bin, LIU Jingtian, MENG Xiaorong. Research Progress in Preparation Methods of Vanadium Pentoxide Thin Film Materials. Materials Reports, 2024, 38(5): 22100297-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100297  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22100297
1 Beijing Normal University, Central China Normal University, Nanjing Normal University, Inorganic Chemistry Department, ed. Inorganic che-mistry (Fourth Edition), Higher Education Press, China, 2003, pp. 747 (in Chinese).
北京师范大学, 华中师范大学, 南京师范大学无机化学教研室编. 无机化学(第四版下册), 高等教育出版社, 2003, pp. 747.
2 Qi J. Preparation and application of vanadium oxides, Chemical Industry Publishing House, China, 2017 (in Chinese).
齐济. 钒氧化物的制备及其应用, 化学工业出版社, 2017.
3 Morin F J. Physical Review Letters, 1959, 3(1), 34.
4 Armer C F, Lübke M, Reddy M V, et al. Journal of Power Sources, 2017, 353, 40.
5 Xu Y K, Hu Y F, Sun S, et al. ECS Journal of Solid State Science and Technology, 2020, 9(7), 3001.
6 Beke S. Thin Solid Films, 2011, 519(6), 1761.
7 Babeva T, Awala H, Grand J, et al. Journal of Physics: Conference Series, 2018, 992(1), 012038.
8 Raja S, Subramani G, Bheeman D, et al. Optik - International Journal for Light and Electron Optics, 2016, 127(1), 461.
9 Sinha S K. Superlattices and Microstructures, 2019, 125, 88.
10 Abbas Tariq Abdul-Hameed. Journal of Electronic Materials, 2018, 47(12), 7331.
11 Pérez-Pacheco A, Acosta-Najarro D R, Castañeda-Guzmán R, et al. Journal of Applied Physics, 2013, 113(18), 184307.
12 Abd-Alghafour N M, Mohammed Sabah M, Ahmed Naser M, et al. Journal of Electronic Materials, 2019, 48(9), 5640.
13 Li C. Chinese Battery Industry, 2020, 24(3), 121 (in Chinese).
李聪. 电池工业, 2020, 24(3), 121.
14 Yan B, Zhong S K, Liu X J, et al. Journal of Alloys and Compounds, 2021, 875, 159899.
15 Hu B B, Li L, Xiong X, et al. Journal of Solid State Electrochemistry, 2019, 23, 1315.
16 Zeng J, Huang J D, Liu J, et al. Carbon, 2019, 154, 24.
17 Li J M, Qin H, Liu J M. Nonferrous Metals(Extractive Metallurgy), 2021(11), 79 (in Chinese).
李基铭, 覃慧, 刘嘉铭. 有色金属(冶炼部分), 2021(11), 79.
18 Chen Z, Augustyn V, Wen J, et al. Advanced Materials, 2011, 23(6), 791.
19 Korkmaz S, Meydaneri Tezel F, Kariper A. Synthetic Metals, 2018, 242, 37.
20 Xu J H, Zheng F, Xi C P, et al. Journal of Power Sources, 2018, 404(10), 47.
21 Li M, Weng D, Wei Y X, et al. Electrochimica Acta, 2017, 248, 206.
22 Yu D R, Wei W, Wei M, et al. Journal of Solid State Electrochemistry, 2022, 26, 1399.
23 Chang Chung-Chieh, Chi Po-Wei, Chandan Prem, et al. Materials, 2019, 12(15), 2475.
24 Amal G, Dhayal R A, Albert I A, et al. Materials Today: Proceedings, 2020, 36, 464.
25 Shafique S, Yang S M, Wang Y M, et al. Sensors and Actuators A: Phy-sical, 2019, 296, 38.
26 Abbasi M, Rozati S M, Irani R, et al. Materials Science in Semiconductor Processing, 2019, 29, 132.
27 Schneider Krystyna, Maziarz Wojciech. Sensors, 2018, 18(12), 4177.
28 Ali I M, Rzaij J M, Abbas Q A, et al. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42, 2375.
29 Yang S, Cen Y, Hu B B, et al. ChemElectroChem, 2021, 8(11), 1993.
30 Peng Y, Zhan Z L. Materials for Mechanical Engineering, 2011, 35(10), 70 (in Chinese).
彭雁, 詹肇麟. 机械工程材料, 2011, 35(10), 70.
31 Schneider K. Journal of Materials Science: Materials in Electronics, 2022, 33, 10410.
32 Lin Tien-Chai, Jheng Bai-Jhong, Huang Wen-Chang, et al. Energies, 2021, 14, 2065.
33 Patil C E, Tarwal N L, Jadhav P R, et al. Current Applied Physics, 2014, 14(3), 389.
34 Margoni M M, Mathuri S, Ramamurthi K, et al. Applied Surface Science, 2017, 418(A), 280.
35 Ramana C V, Naidu B S, Hussain O M, et al. Journal of Physics D: Applied Physics, 2001, 34(7), 35.
36 Wu J, Qiu D, Zhang H L, et al. Journal of the Electrochemical Society, 2018, 165(5), D183.
37 Liu X L, Jiang Y Q, Ba D L, et al. Chemical Communications, 2020, 56(1), 70.
38 Li J X, Li Y, Zhou J Z, et al. Electronic Components and Materials, 2021, 40(4), 316 (in Chinese).
李军显, 李毅, 周建忠, 等. 电子元件与材料, 2021, 40(4), 316.
39 Zhen E M, Xu G, Miao L, et al. Micronanoelectronic Technology, 2009, 46(9), 530 (in Chinese).
甄恩明, 徐刚, 苗蕾, 等. 微纳电子技术, 2009, 46(9), 530.
40 Vishva J, Dimple S, Kinjal P. Materials Today: Proceedings, 2022, 48(3), 706.
41 Grayli S V, Leach G W, Bahreyni B. Sensors and Actuators A: Physical, 2018, 279, 630.
42 Amala A C, Vignesh R, Geetha G V, et al. Physica Status Solidi (A), 2021, 218(19), 2100282.
43 Jeyalakshmi K, Vijayakumar S, Nagamuthu S, et al. Materials Research Bulletin, 2013, 48(2), 760.
44 Diktanait A, Gaidamaviien G, Kazakeviius E, et al. Thermochimica Acta, 2020, 685, 178511.
45 Yu W J, Wang J X, Gou Z P, et al. Ceramics International, 2013, 39(3), 2639.
46 Liu H Y, Liang X P, Jiang T, et al. Electrochimica Acta, 2022, 404, 139784.
47 Jeyalakshmi K, Vijayakumar S, Purushothaman K K, et al. Materials Research Bulletin, 2013, 48(7), 2578.
48 Yu D M, Zhang S T, Liu D W, et al. Journal of Materials Chemistry, 2010, 20(48), 10841.
49 Abyazisani M, Bagheri-Mohagheghi M M, Benam M R. Materials Science in Semiconductor Processing, 2015, 31, 693.
50 Mousavi M, Kompany A, Shahtahmasebi N, et al. Physica Scripta, 2013, 88(6), 065701.
51 Li Y W, Yao J H, Uchaker E, et al. The Journal of Physical Chemistry C, 2013, 117(45), 23507.
52 Gershinsky Gregory, Yoo Hyun Deog, Gofer Yosef, et al. Langmuir, 2013, 29(34), 10964.
53 Balboni R D C, Lemos R M J, Moura E A, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 16911.
54 Vasanth Raj D, Ponpandian N, Mangalaraj D, et al. Materials Science in Semiconductor Processing, 2013, 16(2), 256.
55 Etemadi B, Mazloom J, Ghodsi F E. Materials Science in Semiconductor Processing, 2017, 61, 99.
56 Wei Y X, Zhou J L, Zheng J M, et al. Electrochimica Acta, 2015, 166, 277.
57 Moura E A, Cholant C M, Balboni R D C, et al. Journal of Physics and Chemistry of Solids, 2018, 119, 1.
58 Shi Q Q. The study of the preparation and optical response characteristics of vanadium pentoxide thin films. Master's Thesis, University of Chinese Academy of Sciences, China, 2021 (in Chinese).
石倩倩. 五氧化二钒薄膜的制备及光学响应特性研究. 硕士学位论文, 中国科学院大学, 2021.
59 Rubin A C, Liu Y L, Lee K M, et al. Journal of Applied Physics, 1986, 60(2), 749.
60 Abd-Alghafour N M, Ahmed Naser M, Hassan Z, et al. Applied Physics A, 2016, 122(9), 817.
61 Modafferi V, Trocino S, Donato A, et al. Thin Solid Films, 2013, 548, 689.
62 Khalaf M K, Hassan N K, Khudiar A I, et al. Physics of the Solid State, 2020, 62(1), 74.
63 Zhang S B, Li Y H, Zhu N N, et al. Ferroelectrics, 2022, 551(1), 259.
64 Zhu N N, Zheng F Z, Zhu Y W, et al. The International Journal of Advanced Manufacturing Technology, 2016, 87, 1951.
65 Dhananjaya M, Guru Prakash N, Lakshmi Narayana A, et al. Journal of Electronic Materials, 2020, 49, 1922.
66 Esther A C M, Porwal D, Pradeepkumar M S, et al. Physica B: Condensed Matter, 2015, 478, 161.
67 Muhammed M Sh, Kalaf M K, Mohammed S J. IOP Conference Series: Materials Science and Engineering, 2019, 557, 012065.
68 Buchheit Annika, Teßmer Britta, Muñoz-Castro Marina, et al. Chemistry Open, 2021, 10, 340.
69 Zuo J, Wang H, Wang Q, et al. Vacuum, 2022, 196, 110756.
70 Mane A A, Ganbavle V V, Gaikwad M A, et al. Journal of Analytical and Applied Pyrolysis, 2015, 115, 75.
71 Yusuke Iida, Yoshinori Kanno. Journal of Materials Processing Technology, 2009, 209(5), 2421.
72 Giorgetti M, Berrettoni M, Smyrl W H. Chemistry of Materials, 2007, 19(24), 5991.
73 Farcy J, Maingot S, Soudan P, et al. Solid State Ionics, 1997, 99(1-2), 61.
74 Zhan S Y, Wei Y J, Bie X F, et al. Journal of Alloys and Compounds, 2010, 502(1), 92.
75 Guru P N, Dhananjaya M, Purusottam R B, et al. Materials Today: Proceedings, 2016, 3(10), 4076.
76 Panagopoulou M, Vernardou D, Koudoumas E, et al. The Journal of Physical Chemistry C, 2017, 121(1), 70.
77 Tabatabai Y S, Pilevar S R, Shafei S. Materials Science and Enginee-ring: B, 2021, 263, 114755.
78 Mousavi M, Khorami G, Kompany A, et al. Modern Physics Letters B, 2018, 32(20), 1850229.
79 Vijayakumar Y, Nagaraju P, Sreekanth T, et al. Superlattices and Microstructures, 2021, 153, 106870.
80 Nagaraju P, Vijayakumar Y, Ramana Reddy M V, et al. RSC Advances, 2019, 9(29), 16515.
81 Tutel Y, Batuhan Durukan M, Koc S, et al. Journal of the Electrochemical Society, 2021, 168(10), 106511.
82 Khmissi H, Mahmoud S A, Akl A A. Optik, 2021, 227, 165979.
83 Gandasiri R, Sreelatha C J, Nagaraju P, et al. Physica B: Condensed Matter, 2019, 572(B), 220.
84 Liu Y N, Jia C Y, Wan Z Q, et al. Solar Energy Materials and Solar Cells, 2015, 132, 467.
85 Asen Parvin, Shahrokhian Saeed, Iraji zad Azam. International Journal of Hydrogen Energy, 2017, 42(33), 21073.
86 Li H L, Wei K Y, Yang Z, et al. Chemical Physics, 2021, 544, 111111.
87 Margoni M M, Mathuri S, Ramamurthi K, et al. Applied Surface Science, 2018, 449, 193.
88 Hu T, Sun J J, Zhang Y F, et al. Journal of Materials Science & Techno-logy, 2021, 83, 7.
[1] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[2] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[3] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[4] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[5] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[6] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[7] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[8] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[9] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[10] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[11] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[12] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[13] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[14] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[15] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed