Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22110073-6    https://doi.org/10.11896/cldb. 22110073
  无机非金属及其复合材料 |
采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究
褚洪岩1, 汤金辉2,*, 王群1, 高李1, 赵志豪1
1 南京林业大学土木工程学院,南京 210037
2 东南大学材料科学与工程学院,南京 211189
Feasibility of Producing Ultra-high Performance Concrete with High Elastic Modulus by Nano Alumina
CHU Hongyan1, TANG Jinhui2,*, WANG Qun1, GAO Li1, ZHAO Zhihao1
1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 8425KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料具有粒径小、比表面积大、化学活性高等独特性能,能够提升水泥基材料的力学性能和在恶劣环境下的耐久性,在水泥基材料领域具有广阔的应用前景。弹性模量是超高性能混凝土(UHPC)的重要力学参数之一。虽然目前UHPC的抗压强度得到了大幅提升,但是其弹性模量并未随抗压强度同幅度增长。为了探究采用纳米氧化铝(NA)制备高弹性模量UHPC的可行性,本工作利用MAA (Modified Andreasen and Andersen)模型设计UHPC初始配合比,研究不同掺量的NA对UHPC工作性能、力学性能和耐久性能的影响。此外,本工作还探究了NA对UHPC微观孔结构和微观力学性能的影响。研究表明:(1)NA能使UHPC的28 d抗折强度、抗压强度、弹性模量分别提高8.23%~16.31%、8.04%~26.39%、9.44%~16.55%;(2)NA能使UHPC的干缩、氯离子迁移系数分别降低2.54%~13.01%、8.21%~17.28%;(3)NA能够优化UHPC的孔结构,提高其浆体弹性模量;(4)综合考虑NA对UHPC工作性能、力学性能和耐久性能的影响,NA在UHPC中的优选掺量为1.0%。本工作的研究结果对利用NA制备高弹性模量的UHPC具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚洪岩
汤金辉
王群
高李
赵志豪
关键词:  纳米氧化铝  超高性能混凝土  力学性能  弹性模量  干燥收缩  耐久性    
Abstract: Nano material has been regarded as a promising material with wide applications in cement-based materials because of its unique properties, such as small particle size, big specific surface area, and high chemical activity. Elastic modulus is one of the critical mechanics parameters of ultra-high performance concrete (UHPC). Currently, although the compressive strength of UHPC has been increased significantly, the increasing magnitude of elastic modulus of UHPC is far lower than that of compressive strength. To explore the feasibility of producing UHPC with high elastic modulus by nano alumina (NA), the initial mixture of UHPC was designed via MAA model, and the effects of different contents of NA on the fluidity, mechanical properties, and durability of UHPC were systematically studied. In addition, the influence of NA on the micro pore structure and micromechanical properties of UHPC was also investigated. It was found that, (ⅰ) the flexural strength, compressive strength, and elastic modulus of UHPC at curing age of 28 d were increased by 8.23%—16.31%, 8.04%—26.39%, 9.44%—16.55%, respectively, because of the utilization of NA; (ⅱ) the drying shrinkage and chloride-ion migration coefficient were reduced by 2.54%—13.01% and 8.21%—17.28%, respectively, due to the addition of NA; (ⅲ) the pore structure of UHPC and the elastic modulus of UHPC paste could be improved via NA; (ⅳ) the optimal content of NA was 1.0%, considering the effects of NA on the fluidity, mechanical properties, and durability of UHPC. The findings of this work are of guiding significance for the producing of UHPC with high elastic modulus.
Key words:  nano alumina    ultra-high performance concrete    mechanical property    elastic modulus    drying shrinkage    durability
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278262);国家自然科学基金青年基金(52108197)
通讯作者:  *汤金辉,东南大学材料科学与工程学院讲师、硕士研究生导师。2018年东南大学材料科学与工程专业博士毕业。目前主要从事纳米改性超高性能混凝土制备,重点研究基于水化微结构调控的混凝土基体增韧。发表论文30余篇,包括Cement and Concrete Composites、Chemical Geology、Journal of Sustainable Cement-Based Materials、《材料导报》 《土木工程学报》等。101012824@seu.edu.cn   
作者简介:  褚洪岩,南京林业大学土木工程学院副教授、硕士研究生导师。2017年东南大学材料科学与工程专业博士毕业。目前主要从事高性能土木工程材料研发工作,重点研究新型核电牺牲材料和绿色超高性能水泥基材料的制备、表征及应用。发表论文40余篇,包括Cement and Concrete Composites、Construction and Building Materials、Journal of Sustai-nable Cement-Based Materials、《硅酸盐学报》 《材料导报》 《建筑材料学报》等;授权国家发明专利10余件,授权美国发明专利2件。
引用本文:    
褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
CHU Hongyan, TANG Jinhui, WANG Qun, GAO Li, ZHAO Zhihao. Feasibility of Producing Ultra-high Performance Concrete with High Elastic Modulus by Nano Alumina. Materials Reports, 2024, 38(5): 22110073-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb. 22110073  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22110073
1 Chu H, Gao L, Qin J, et al. Materials Reports, 2022, 36(5), 20090345(in Chinese).
褚洪岩, 高李, 秦健健, 等. 材料导报, 2022, 36(5), 20090345.
2 Rong Z, Wang Y, Jiao M, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2322(in Chinese).
戎志丹, 王亚利, 焦茂鹏, 等. 硅酸盐学报, 2021, 49(11), 2322.
3 Shi J, Shi C, Ouyang X, et al. Materials Reports, 2021, 35(3), 03067(in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 03067.
4 Chu H, Gao L, Qin J, et al. Construction and Building Materials, 2022, 335, 127385.
5 Alsalman A, Dang C N, Prinz G S, et al. Construction and Building Materials, 2017, 153, 918.
6 Wu Z, Shi C, He W, et al. Cement and Concrete Composites, 2017, 79, 148.
7 Yang J, Chen B C, Su J Z. Journal of the Chinese Ceramic Society, 2020, 48(5), 652(in Chinese).
杨简, 陈宝春, 苏家战. 硅酸盐学报, 2020, 48(5), 652.
8 Li P P, Yu Q L, Brouwers H J H. Construction and Building Materials, 2018, 170, 649.
9 Jiang J, Zhou W, Chu H, et al. Journal of Wuhan University of Techno-logy-Mater. Sci. Ed., 2019, 34(6), 1350.
10 Ouyang X, Shi C, Wu Z, et al. Cement and Concrete Research, 2020, 138, 106241.
11 Wu Z, Shi C, Khayat K. Cement and Concrete Composites, 2016, 71, 97.
12 Wang Q N, Gu C P, Sun W. Materials Reports A: Review Papers, 2017, 31(12), 85(in Chinese).
王倩楠, 顾春平, 孙伟. 材料导报:综述篇, 2017, 31(12), 85.
13 Amanjean E N, Mouret M, Vidal T. Construction and Building Mate-rials, 2019, 224, 1007.
14 Zhang Y S, Zhang W H, Chen Z Y. Materials Reports A: Review Papers, 2017, 31(12), 1(in Chinese).
张云升, 张文华, 陈振宇. 材料导报: 综述篇, 2017, 31(12), 1.
15 Wu Z, Khayat K H, Shi C. Cement and Concrete Research, 2019, 123, 105786.
16 Chu H, Qin J, Gao L, et al. Journal of Sustainable Cement-Based Materials, 2022, 11, 2104757.
17 Zhang A, Ge Y, Yang W, et al. Construction and Building Materials, 2019, 218, 116767.
18 Peng Y, Ma K, Long G, et al. Materials, 2019, 12, 2598.
19 Joshaghani A, Balapour M, Mashhadian M, et al. Construction and Building Materials, 2020, 245, 118444.
20 Yang Z, Sui S, Wang L, et al. Construction and Building Materials, 2020, 232, 177219.
21 Feng H, Shen S, Pang Y, et al. Construction and Building Materials, 2021, 270, 121861.
22 Bahareh M, Soheil J, Kirk V, et al. Materials, 2021, 14, 6778.
23 Meddah M S, Praveenkumar T R, Vijayalakshmi M M, et al. Construction and Building Materials, 2020, 255, 119358.
24 Li Z H, Wang H F, He S, et al. Materials Letters, 2006, 60, 356.
25 Yu R, Fan D, Shui Z, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 1145(in Chinese).
余睿, 范定强, 水中和, 等. 硅酸盐学报, 2020, 48(5), 1145.
26 Wen D, Wei D, Wu L, et al. Journal of Building Materials, 2022, 25(7), 693(in Chinese).
温得成, 魏定邦, 吴来帝, 等. 建筑材料学报, 2022, 25(7), 693.
27 Yang R, Yu R, Shui Z, et al. Journal of Cleaner Production, 2020, 258, 120673.
28 Yu R, Spiesz P, Brouwers H J H. Cement and Concrete Research, 2014, 56, 29.
29 Wang X, Yu R, Shui Z, et al. Journal of Cleaner Production, 2019, 221, 805.
30 Karim R, Najimi M, Shafei B. Construction and Building Materials, 2019, 227, 117031.
31 Zhao S, Sun W. Construction and Building Materials, 2014, 63, 150.
32 Chu H, Gao L, Qin J, et al. Construction and Building Materials, 2022, 335, 127385.
33 Stefancic M, Mladenovic A, Bellotto M, et al. Construction and Building Materials, 2017, 139, 256.
34 Seifan M, Mendoza S, Berenjian A. Buildings, 2021, 11, 60.
35 Mo Z, Wang R, Gao X. Construction and Building Materials, 2020, 256, 119454.
36 Guler S, Turkmenoglu Z F, Ashour A. Construction and Building Mate-rials, 2020, 250, 118847.
37 Li W, Huang Z, Cao F, et al. Construction and Building Materials, 2015, 95, 366.
38 Yu L, Wu R. Construction and Building Materials, 2020, 259, 120657.
39 Lozano-Lunar A, da Silva P R, de Brito J, et al. Journal of Cleaner Production, 2019, 219, 818.
40 Ledesma E F, Jimenez J R, Ayuso J, et al. Journal of Cleaner Production, 2015, 87, 692.
41 Soliman N A, Tagnit-Hamou A. Construction and Building Materials, 2017, 139, 374.
42 Meng W, Khayat K H. Cement and Concrete Research, 2018, 105, 64.
43 Sorelli L, Constantinides G, Ulm F J, et al. Cement and Concrete Research, 2008, 38, 1447.
44 Hu C, Li Z. Cement and Concrete Composites, 2015, 57, 17.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[15] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed