Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23030202-8    https://doi.org/10.11896/cldb.23030202
  金属与金属基复合材料 |
钛基石墨烯复合材料的分散性、界面结构及力学性能
佘欢1,*, 时磊1, 董安平2,3,*
1 上海应用技术大学机械工程学院,上海 201418
2 上海交通大学材料科学与工程学院,上海 200240
3 上海市先进高温材料及其精密成形重点实验室,上海 200240
Dispersion, Interface Structure and Mechanical Properties of Titanium Based Graphene Composites
SHE Huan1,*, SHI Lei1, DONG Anping2,3,*
1 School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 19588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯由于独特的结构和优异的力学、导电、润滑等性能,被认为是理想的金属基复合材料的增强体。将石墨烯作为增强体增强钛基复合材料有着巨大的应用潜力。然而,石墨烯的分散性及其与钛基体的反应是制约获得高性能石墨烯增强钛基复合材料的难点。本文综述了钛基石墨烯复合材料的分散性、界面及力学性能的研究进展。钛基石墨烯复合材料通常采用粉末冶金法制备,石墨烯能较均匀地分散于复合材料组织中,但当石墨烯添加量过多时仍会出现团聚现象。石墨烯与钛基体易发生反应生成TiC,通过固化烧结工艺的改进、基体复合化、石墨烯表面改性以及原位自生等方法可以有效地抑制界面反应并提高界面结合力。随着石墨烯含量的增加,钛基石墨烯复合材料的压缩、拉伸强度与硬度一般呈现先增大后减小的趋势。石墨烯增强钛基复合材料的强化机制通常以载荷传递强化为主,但有些情况下由石墨烯引起的位错强化、细晶强化及奥罗万(Orowan)强化效果也较为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
佘欢
时磊
董安平
关键词:  石墨烯  钛基复合材料  分散性  界面  强度  强化机制    
Abstract: Graphene is considered to be an ideal reinforcement for metal matrix composites due to its unique structure and excellent mechanical, electrical and lubricating properties. However, the dispersion of graphene and its reaction with titanium matrix are the difficulties in obtaining high-performance graphene reinforced titanium matrix composites. This paper reviews the research progress of dispersion, interface and mechanical properties of titanium-based graphene composites. Titanium-based graphene composites are usually prepared by powder metallurgy. Graphene can be uniformly dispersed in the composite structure, but agglomeration still occurs when too much graphene is added. Graphene and titanium matrix are prone to react to form TiC. The interface reaction can be effectively inhibited and the interface bonding force can be improved by improving the curing sintering process, matrix compounding, graphene surface modification and in-situ self-generation. With the increase of graphene content, the compressive, tensile strength and hardness of titanium-based graphene composites generally increase first and then decrease. The strengthening mechanism of graphene reinforced titanium matrix composites is usually dominated by load transfer strengthening, but in some cases, dislocation strengthening, fine grain strengthening and Orowan strengthening caused by graphene are also significant.
Key words:  graphene    titanium matrix composite    dispersion    interface    strength    strengthening mechanism
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金青年基金(51901131);上海应用技术大学引进人才科研启动项目(YJ2020-19)
通讯作者:  *佘欢,上海应用技术大学机械工程学院讲师、硕士研究生导师。2017年获上海交通大学工学博士学位,2017—2019年在上海交通大学医学院附属第九人民医院从事博士后研究工作。近年来主要从事新型生物医用钛合金、金属材料3D打印、智能制造等研究。主持国家自然科学基金青年基金项目1项,参加973计划、国家重点项目、国家自然科学基金面上项目等多项,累积发表论文10余篇。 huanshe@sit.edu.cn
董安平,上海交通大学材料科学与工程学院研究员、博士研究生导师,中国材料研究学会青年工作委员会副主任、常务理事,中国金属学会冶金固体废弃物利用分会委员。主要从事生物医用钛合金、高温合金凝固及增材制造理论与应用基础研究。作为项目负责人主持国家重点研发计划课题、国家973项目子课题、国家自然科学基金(4项)等项目。以第一/通信作者在Advanced Functional Materials、Materials Characterization、Materials and Design、MSEA、JAC、MMTA等期刊发表SCI/EI论文60余篇。 apdong@sjtu.edu.cn   
引用本文:    
佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
SHE Huan, SHI Lei, DONG Anping. Dispersion, Interface Structure and Mechanical Properties of Titanium Based Graphene Composites. Materials Reports, 2024, 38(5): 23030202-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23030202  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23030202
1 Hu Y B, Cong W L, Wang X L, et al. Composites Part B:Engineering, 2018, 133, 91.
2 Henriques V A R, Campos P P D, Cairo C A A, et al. Materials Research, 2005, 8(4), 443.
3 Kondoh K, Umeda J, Soba R, et al. Titanium in Medical and Dental Applications, DOI:10.1016/B978-0-12-812456-7.00027-5.
4 Yu Q, Qi L, Tsuru T, et al. Science, 2015, 347(6222), 635.
5 Guo S, Meng Q, Cheng X, et al. Progress in Natural Science: Materials International, 2015, 25(5), 414.
6 Hayat M D, Singh H, He Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 418.
7 Zhang F M, Wang J, Liu T F, et al. Materials & Design, 2020, 186, 108330.
8 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256.
9 Suo L, Jiang N, Wang Y, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107(3), 635.
10 Dong L L, Xiao B, Liu Y, et al. Ceramics International, 2018, 44(15), 17835.
11 Cao Z, Wang X D, Li J L, et al. Journal of Alloys and Compounds, 2017, 696, 498.
12 Cao H C, Liang Y L. Journal of Alloys and Compounds, 2020, 812, 152057.
13 Yan Q, Chen B, Cao L, et al. Journal of Materials Science & Technology, 2022, 96, 85.
14 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
15 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
16 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22(35), 3906.
17 Tjong S C. Materials Science and Engineering R: Reports, 2013, 74(10), 281.
18 Farjadian F, Abbaspour S, Sadatlu M A A, et al. Chemistryselect, 2020, 5(33), 10200.
19 Liu P, Yan C X, Ling Z C, et al. Materials Reports, 2016, 30(19), 39(in Chinese).
刘朋, 闫翠霞, 凌自成, 等. 材料导报, 2016, 30(19), 39.
20 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75.
21 Smith A T, Lachance A M, Zeng S, et al. Nano Materials Science, 2019, 1(1), 31.
22 Hansora D P, Shimpi N G, Mishra S. Jom, 2015, 67(12), 2855.
23 Pei S, Cheng H M. Carbon, 2012, 50(9), 3210.
24 Nieto A, Bisht A, Lahiri D, et al. International Materials Reviews, 2016, 62(5), 241.
25 Sahoo S K, Mallik A. Nano, 2019, 14(3), 1930003.
26 Baig Z, Mamat O, Mustapha M. Critical Reviews in Solid State and Materials Sciences, 2016, 43(1), 1.
27 Zhang Z Y, Liang Y L, Cao H C, et al. Science of Advanced Materials, 2020, 12(2), 296.
28 Shang C Y, Zhang F M, Zhang B, et al. Materials & Design, 2020, 196, 109.
29 Dorri M A, Omrani E, Menezes P L, et al. Composites Part B: Enginee-ring, 2015, 77, 402.
30 Haghighi M, Shaeri M H, Sedghi A, et al. Nanomaterials(Basel), 2018, 8(12), 1024.
31 Ranjan R, Bajpai V. Journal of Composite Materials, 2021, 55(17), 2369.
32 Wei L X, Liu X Y, Zheng S T, et al. Materials Chemistry and Physics, 2021, 269, 124763.
33 Hu Z R, Tong G Q, Nian Q, et al. Composites Part B:Engineering, 2016, 93, 352.
34 Sedehi S M R, Khosravi M, Yaghoubinezhad Y. Ceramics International, 2021, 47(23), 33180.
35 Naseer A, Ahmad F, Aslam M, et al. Materials and Manufacturing Processes, 2019, 34(9), 957.
36 Hu Z, Wang D, Chen C, et al. Journal of Materials Research, 2019, 34(10), 1744.
37 Chu K, Jia C C. Physica Status Solidi a-Applications and Materials Science, 2014, 211(1), 184.
38 Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, et al. Journal of Alloys and Compounds, 2014, 615, S578.
39 Yue H Y, Yao L H, Gao X, et al. Journal of Alloys and Compounds, 2017, 691, 755.
40 Thomas T, Zhang C, Sahu A, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 728, 45.
41 Luo J M, Xie J, Xu J L, et al. Materials Reports, 2021, 35(22), 22098(in Chinese).
罗军明, 谢娟, 徐吉林, 等. 材料导报, 2021, 35(22), 22098.
42 Wei L X, Liu X Y, Gao Y Z, et al. Materials & Design, 2021, 197, 109261.
43 Liu J, Hu N, Liu X, et al. Nanoscale Research Letters, 2019, 14(1), 114.
44 Gürbüz M, Mutuk T. Journal of Composite Materials, 2017, 52(4), 543.
45 Mu X N, Cai H N, Zhang H M, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 725, 541.
46 Mu X N, Cai H N, Zhang H M, et al. Materials & Design, 2018, 140, 431.
47 Lin Z Q, Zheng W, Li H, et al. Acta Metallurgica Sinica, 2021, 57(1), 111(in Chinese).
林彰乾, 郑伟, 李浩, 等. 金属学报, 2021, 57(1), 111.
48 Hu Z R, Tong G Q, Zhang C, et al. China Surface Engineering, 2015, 28(6), 127(in Chinese).
胡增荣, 童国权, 张超, 等. 中国表面工程, 2015, 28(6), 127.
49 Zhang Z Y, Liang Y L, Cao H Q, et al. Materials Research Express, 2019, 6(11), 115609
50 Zhao H Y, Zhang M, Yu J S, et al. Titanium Industry Progress, 2022, 39(2), 29(in Chinese).
赵会宇, 张媚, 于佳石, 等. 钛工业进展, 2022, 39(2), 29.
51 Li S, Sun B, Imai H, et al. Composites Part A: Applied Science and Manufacturing, 2013, 48, 57.
52 Cao Z, Li J L, Zhang H P, et al. Journal of Iron and Steel Research International, 2020, 27(11), 1357.
53 Zhang B, Zhang F M, Saba F, et al. Journal of Alloys and Compounds, 2021, 859, 157777.
54 Mu X N, Cai H N, Zhang H M, et al. Carbon, 2018, 137, 146.
55 Lu J W, Dong L L, Liu Y, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 108330.
56 Dong L L, Xiao B, Jin L H, et al. Ceramics International, 2019, 45(15), 19370.
57 Shin S E, Choi H J, Hwang J Y, et al. Scientific Reports, 2015, 5, 16114.
58 Yu J S, Zhao Q Y, Huang S X, et al. Journal of Alloys and Compounds, 2021, 879, 160346.
59 Yan Q, Chen B, Zhang B, et al. Journal of Alloys and Compounds, 2022, 893, 162183.
60 Geng Y, Wang S J, Kim J K. Journal of Colloid and Interface Science, 2009, 336(2), 592.
61 Wei T, Luo G, Fan Z, et al. Carbon, 2009, 47(9), 2296.
62 Kuilla T, Bhadra S, Yao D, et al. Progress in Polymer Science, 2010, 35(11), 1350.
63 Li M X, Che H W, Liu X Y, et al. Journal of Materials Science, 2014, 49(10), 3725.
64 Ghodrati H, Ghomashchi R. Flatchem, 2019, 16, 100113.
65 Duan T, Jin L H, Liang M, et al. Materials Reports, 2022, 36(S2), 308(in Chinese).
段涛, 金利华, 梁明, 等. 材料导报, 2022, 36(S2), 308.
66 Guo Y H, Yu K, Niu J Z, et al. Journal of Materials Research and Technology, 2021, 15, 6871.
67 Wang J, Zhang F M, Shang C Y, et al. Acta Materiae Compositae Sinica, 2020, 37(12), 3137(in Chinese).
王娟, 张法明, 商彩云, 等. 复合材料学报, 2020, 37(12), 3137.
68 Huang L J, Geng L, Peng H X. Progress in Materials Science, 2015, 71, 93.
69 Sun F, Wang K X, Yang H, et al. Titanium Industry Progress, 2019, 36(1), 8(in Chinese).
孙峰, 王凯旋, 杨辉, 等. 钛工业进展, 2019, 36(1), 8.
70 Gürbüz M, Mutuk T, Uyan P. Metals and Materials International, 2020, 27(4), 744.
71 Wang W, Zhou H X, Wang Q J, et al. Ordnance Material Science and Engineering, 2019, 42(1), 26(in Chinese).
王伟, 周海雄, 王庆娟, 等. 兵器材料科学与工程, 2019, 42(1), 26.
72 Su Y, Zuo Q, Yang G, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3882(in Chinese).
苏颖, 左倩, 杨刚, 等. 稀有金属材料与工程, 2017, 46(12), 3882.
73 Yu J S, Zhao Q Y, Zhao Y Q, et al. Journal of Materials Research and Technology, 2021, 15, 3683.
74 Song Y, Liu W, Sun Y, et al. Nanomaterials(Basel), 2021, 11(6), 1440.
75 De Cicco M, Konishi H, Cao G, et al. Metallurgical and Materials Transactions A, 2009, 40(12), 3038.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[3] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[8] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[9] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[10] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[11] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[12] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[13] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[14] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[15] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed