Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23060124-6    https://doi.org/10.11896/cldb.23060124
  特种工程材料 |
有压与无压烧结雪无侧限抗压强度对比试验研究
霍海峰1,2, 杨雅静1, 孙涛3,*, 樊戎4, 蔡靖1, 胡彪1
1 中国民航大学交通科学与工程学院,天津 300300
2 交通部机场工程安全与长期性能科研基地,天津 300300
3 中国人民解放军陆军勤务学院,重庆 401331
4 中国人民解放军国防大学,北京 100091
Unconfined Compressive Strength Comparative Experimental Research of Sintered Snow with and Without Pressure
HUO Haifeng1,2, YANG Yajing1, SUN Tao3,*, FAN Rong4, CAI Jing1, HU Biao1
1 School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
2 Ministry of Transport Airport Engineering Safety and Long Term Performance Research Base, Tianjin 300300, China
3 Army Logistics Academy of PLA, Chongqing 401331, China
4 China People's Liberation Army National Defence University, Beijing 100091, China
下载:  全 文 ( PDF ) ( 12862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 雪层烧结是全球高纬度寒区雪跑道建造的重要环节,是指雪颗粒间胶结强度随时间不断增长的过程。为确定压实雪层烧结时间设计值,并深入对比有压烧结和无压烧结雪层烧结强度变化规律,自主研发加压设备进行无侧限抗压强度试验。研究表明,无侧限压缩应力-应变曲线呈现有峰值强度和无峰值强度两种形式,有峰值的情况更易发生在高压和长烧结时间下。有压烧结时雪颗粒不断受到挤压,促进雪融化成水,有利于冰的形成,故雪的密度随烧结时间延长先快后慢不断增长,而无压烧结时密度基本不发生变化,进而造成有压烧结雪样的强度和弹性模量均大于无压烧结雪样。无压烧结15 d后雪的强度增长显著放缓,故雪跑道建设过程中,在烧结温度为-10 ℃左右,建议取15 d作为压实雪层烧结时间设计值。研究成果可用来指导雪跑道建造中雪层强度指标和变形指标的确定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍海峰
杨雅静
孙涛
樊戎
蔡靖
胡彪
关键词:  高纬度寒区  压实雪层  烧结  抗压强度  弹性模量    
Abstract: Snow sintering is an important step in the construction of snow runways in high latitude cold regions around the world, which refers to the process of increasing strength of snow over time. In order to explore the strength change law of naturally deposited snow (sinter with pressure) and compacted snow layer (sinter without pressure), the sintered snow samples were studied by using self-developed pressurized equipment for unconfined compressive strength test. It was found that the unconfined compressive stress-strain curves presented both peak and no-peak strength forms, and the case with peak was more likely to occur under high pressure and long sintering time. The density of pressurized sintered snow samples grows with sintering time and shows the characteristics of fast and then slow, while the density of unpressurized sintering basically does not change. The strength and elastic modulus of pressurized sintered snow samples are greater than that of unpressurized sintering, and the growth rate of both are also greater than that of unpressurized. During the construction of snow runways, it is recommended to take 15 d as the design sintering time for compacted snow layers, and the unpressurized sintered snow strength slows down significantly after 15 d at sintering temperatures of around -10 ℃. The research results have excellent guidance for the determination of snow layer strength index and deformation index in the construction of snow runways.
Key words:  high latitude cold region    compacted snow layer    sinter    compressive strength    elastic modulus
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU5  
基金资助: 中央高校基金(3122020040);天津市交通运输委员会面上项目(2019-18)
通讯作者:  *孙涛,中国人民解放军陆军勤务学院副教授,发表论文35篇。2012年天津大学结构工程专业博士毕业后到中国人民解放军陆军勤务学院工作至今。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。 suntao_tju@126.com   
作者简介:  霍海峰,中国民航大学交通科学与工程学院副教授、硕士研究生导师,发表论文31篇。2012年天津大学岩土工程专业博士毕业后在中国民航大学工作至今。目前从事极地雪跑道、交通基础设施方面的研究。
引用本文:    
霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
HUO Haifeng, YANG Yajing, SUN Tao, FAN Rong, CAI Jing, HU Biao. Unconfined Compressive Strength Comparative Experimental Research of Sintered Snow with and Without Pressure. Materials Reports, 2024, 38(5): 23060124-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23060124  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23060124
1 Sommerfeld R A. Journal of Glaciology, 1971, 10(60), 357.
2 Fu X. Study on the thermal characteristics and mechanical properties of seasonal snow in Northeast China. Master's Thesis, Northeast Agricultural University, China, 2020 (in Chinese).
富翔. 东北地区季节性积雪热特性及力学性质研究. 硕士学位论文, 东北农业大学, 2020.
3 Mellor M, Smith J H. Strength studies of snow, US Army Materiel Command, Cold Regions Research & Engineering Laboratory Press, USA, 1966, pp. 3.
4 Abele G. Deformation of snow under rigid plates at a constant rate of penetration, Corps of Engineers, US Army Cold Regions Research & Engineering Laboratory, USA, 1970.
5 Abele G, Ramseier R O, Wuori A F. In: DA Task 1T062112A13001, Cold Regions Research-Applied Research and Engineering. Hanover, New Hampshire, 1968, pp. 5.
6 Capelli A, Reiweger I, Schweizer J. Frontiers in Physics, 2020, 8, 236.
7 Kinosita S. Physics of Snow and Ice: Proceedings, 1967, 1(2), 911.
8 Lintzén N, Edeskär T. Journal of Cold Regions Engineering, 2015, 29(4), 04014020.
9 Hong J L, Jiao F Q, Ying Y H, et al. Journal of Glaciology and Geocr-yology, 2022, 44(1), 251 (in Chinese).
洪嘉琳, 焦凤琪, 应咏翰, 等. 冰川冻土, 2022, 44(1), 251.
10 Hobbs P V, Mason B J. Philosophical Magazine, 1964, 9(98), 181.
11 Kuroiwa D. Tellus, 1961, 13(2), 252.
12 Dash J G, Fu H, Wettlaufer J S. Reports on Progress in Physics, 1995, 58(1), 115.
13 Colbeck S C. Journal of Geophysical Research: Oceans, 1983, 88(C9), 5475.
14 Kaempfer T U, Schneebeli M. Journal of Geophysical Research: Atmospheres, 2007, 112(D24), 1.
15 Gow A J, Ramseier R O. Journal of Glaciology, 1963, 4(35), 521.
16 Pomeroy J W, Brun E. Snow Ecology: An Interdisciplinary Examination of Snow-covered Ecosystems, 2001, 45, 118.
17 Hong J, Talalay P, Man T, et al. Journal of Glaciology, 2022, 68(272), 1.
18 Sun B, Tang X Y, Xiao E Z, et al. China Engineering Science, 2021, 23(2), 161 (in Chinese).
孙波, 唐学远, 肖恩照, 等. 中国工程科学, 2021, 23(2), 161.
19 White G, Mccallum A. International Journal of Pavement Research and Technology, 2020, 11(3), 311.
20 Cui X B, Liu J X, Tian Y X, et al. Marine Geodesy, 2019, 42(5), 422.
21 Gubler H. Journal of Glaciology, 1982, 28(100), 457.
22 Szabo D, Schneebeli M. Applied Physics Letters, 2007, 90(15), 151916.
23 Li T, Huo H F, Hu B, et al. Polar Research, DOI:10. 13679/j. jdyj. 20220436 (in Chinese).
李涛, 霍海峰, 胡彪, 等. 极地研究, DOI:10. 13679/j. jdyj. 20220436.
24 Schleef S, Löwe H. Journal of Glaciology, 2013, 59(214), 233.
25 Wang X, Baker I. Journal of Geophysical Research: Atmospheres, 2013, 118(22), 12.
26 Diemand D, Klokov V. In: Cold Regions Research and Engineering Laboratory. Hanover, New Hampshire, 2001, pp. 9.
27 Maeno N, Ebinuma T. The Journal of Physical Chemistry, 1983, 87(21), 4103.
28 Huo H F, Li T, Chen Q W, et al. Polar Research, DOI:10. 13679/j. jdyj. 20220423 (in Chinese).
霍海峰, 李涛, 陈庆炜, 等. 极地研究, DOI:10. 13679/j. jdyj. 20220423.
29 General Institute of Water Conservancy and Hydropower Planning and Design, Ministry of Water Resources, Nanjing Hydraulic Research Institute. GB/T 50123-2019, Standard for soil test method, Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation, China, 2019(in Chinese).
水利部水利水电规划设计总院, 南京水利科学研究院. GB/T 50123-2019 土工试验方法标准, 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[8] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[9] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[10] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[11] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[12] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[13] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[14] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[15] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed