Experimental Study on Chloride Ion Transport in Soda Residue Soil Based Partially-exposed Concrete Considering the Influence of Groundwater Level
WANG Yuanzhan1,*, YANG Minxin1, GONG Xiaolong2, WANG Yuchi3, GUO Shang1
1 National Key Laboratory of Water Conservancy Engineering Simulation and Security, Tianjin University, Tianjin 300072, China 2 Tianjin Port( Group) Co., Ltd., Tianjin 300461, China 3 Tianjin Research Institute for Water Transport Engineering, M.O.T, Tianjin 300456, China
Abstract: The durability of reinforced concrete structure in soda residue soil environment lacks relevant research results, which is a subject to be further studied. In order to explore the chloride ion transmission law in concrete buried in soda residue soil, this work simulated the real soda residue soil base and groundwater erosion environment and designed three groundwater levels of -0.2 m, -0.5 m and -0.8 m. The chloride ion natural diffusion test of the partially-exposed concrete in soda residue soil was carried out to explore the chloride ion distribution law of concrete surface adsorption area and underground area under different groundwater level environment. The results show that the chloride ion concentration in surface adsorption area is higher than that in the underground area due to its evaporation concentration and capillarity. The chloride concentration shows a great difference with the change of the groundwater level. The chloride concentration in surface adsorption area shows a downward trend with the increase of groundwater level. The influence of the groundwater level in underground area mainly reflects in the relative position between the concrete and the water level. The chloride concentration in the area below the groundwater level is higher than that above it. On this basis, the chloride ion transmission mechanism in soda residue soil based partially-exposed concrete is explored and the influence of groundwater level on surface chloride ion concentration and diffusion coefficient is quantitatively studied based on Fick’s second law and establish a time-varying model of chloride ion transport considering the influence of groundwater level. The model can provide technical support for quantitative evaluation of chloride ion concentration in concrete under different soda residue erosion environment and prediction of service life in practical engineering.
通讯作者:
王元战,天津大学建筑工程学院教授、博士研究生导师。1982年1月毕业于天津大学海洋工程专业,获学士学位;1984年9月毕业于天津大学水工结构专业,获硕士学位;1992年9月毕业于天津大学结构工程专业,获博士学位。1987年任天津大学讲师,1992年任天津大学副教授,1997年任天津大学教授。目前主要从事港口海岸与近海结构设计理论和方法、土与结构相互作用、结构振动分析理论和方法等方面的研究工作。发表论文100余篇,被国内外权威期刊收录,包括Construction and Building Materials、Geotechnique、Ocean Engineering、《岩土工程学报》《材料科学与工程学报》《材料科学与工艺》等。yzwang@tju.edu.cn
引用本文:
王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
WANG Yuanzhan, YANG Minxin, GONG Xiaolong, WANG Yuchi, GUO Shang. Experimental Study on Chloride Ion Transport in Soda Residue Soil Based Partially-exposed Concrete Considering the Influence of Groundwater Level. Materials Reports, 2024, 38(7): 22010226-7.
1 Chen T. Experimental study on mechanical properties and long-term deformation of soda residue soil under complex stress conditions. Master’s Thesis, Tianjin University, China, 2019(in Chinese). 陈通. 复杂应力条件下碱渣土力学特性及长期变形试验研究. 硕士学位论文, 天津大学, 2019. 2 Fang Y G, Xu M, Zhu Z Z. Journal of South China University of Technology(Natural Science Edition), 2006(11), 70(in Chinese). 房营光, 徐敏, 朱忠伟. 华南理工大学学报(自然科学版), 2006(11), 70. 3 Zhang Z Z, Shi B L, Li Z L. Highway Engineering, 2018, 43(3), 52(in Chinese). 张朝晖, 师百垒, 李宗利. 公路工程, 2018, 43(3), 52. 4 Liu S P, Zhang R L, Kou X Z, et al. Journal of Functional Materials, 2023, 54(2), 2140(in Chinese). 刘树平, 张戎令, 窦晓峥, 等. 功能材料, 2023, 54(2), 2140. 5 Leng F G, Ma X X, Ding W, et al. Building Structure, 2011, 41(11), 148(in Chinese). 冷发光, 马孝轩, 丁威, 等. 建筑结构, 2011, 41(11), 148. 6 Chen S, Zhang J. Shanxi Architectrue, 2017, 43(18), 52(in Chinese). 陈少青, 张吉. 山西建筑, 2017, 43(18), 52. 7 Yan C, Song X K, Zhu P, et al. Chinese Journal of Geotechnical Engineering, 2007(11), 1683(in Chinese). 严驰, 宋旭坤, 朱平, 等. 岩土工程学报, 2007(11), 1683. 8 Guo H Y. Trial study on bearing capacity properties of the soda residue with high water content. Master’s Thesis, Tianjin University, China, 2005(in Chinese). 郭宏宇. 高含水量纯碱渣承载力性质的试验研究. 硕士学位论文, 天津大学, 2005. 9 Qiao H X, Sun B, He Z M, et al. Building Scinece, 2012, 28(11), 47(in Chinese). 乔宏霞, 孙斌, 何忠茂, 等. 建筑科学, 2012, 28(11), 47. 10 Yi B, Lin D Y, Chen Y X, et al. Corrosion & Protection, 2015, 36(9), 819(in Chinese). 易博, 林德源, 陈云翔, 等. 腐蚀与防护, 2015, 36(9), 819. 11 Han J C. Study on the durability of partially-exposed concrete in saline soil areas of Qinghai province. Master’s Thesis, Chang’an University, China, 2012(in Chinese). 韩劲草. 青海盐渍土地区半埋混凝土耐久性研究. 硕士学位论文, 长安大学, 2012. 12 Zhang H L, Zhu Y F, Han J C. Journal of Hefei University of Technology(Natural Science), 2015, 38(6), 804(in Chinese). 张洪亮, 朱月风, 韩劲草. 合肥工业大学学报(自然科学版), 2015, 38(6), 804. 13 Su X P, Wang Q. Journal of Jilin University(Earth Science Edition), 2013, 43(3), 851(in Chinese). 宿晓萍, 王清. 吉林大学学报(地球科学版), 2013, 43(3), 851. 14 Lin D Y, Yi B, Chen Y X, et al. Materials Reports, 2014, 28(11), 137(in Chinese). 林德源, 易博, 陈云翔, 等. 材料导报, 2014, 28(11), 137. 15 Hu Z, Liu Q F. Materials Reports, 2023, 37(9), 137(in Chinese). 胡哲, 刘清风. 材料导报, 2023, 37(9), 137. 16 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 2021, 52(5), 622(in Chinese). 陈伟康, 刘清风. 水利学报, 2021, 52(5), 622. 17 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074(in Chinese). 刘清风. 硅酸盐学报, 2018, 46(8), 1074. 18 Farahani A, Taghaddos H, Shekarchi M. Cement and Concrete Compo-sites, 2015, 59, 10. 19 Wu L J, Wang Y Z, Wang, Y C, et al. Construction and Building Materials, 2020, 243(C), 118. 20 Zhao Y X, Wang C K, Jin W L, et al. Journal of Civil Architectural & Environmental Engineering, 2010, 32(3), 8(in Chinese). 赵羽习, 王传坤, 金伟良, 等. 土木建筑与环境工程, 2010, 32(3), 8. 21 Thomas M, Bamforth P B. Cement and Concrete Research, 1999, 29(4), 487.