Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23100019-13    https://doi.org/10.11896/cldb.23100019
  无机非金属及其复合材料 |
免烧陶粒及陶粒混凝土性能研究进展
赵增丰1,2, 蒲紫盈1, 林璨1, 肖建庄1,2,*, 姚磊1, 姬宸源1, 刘雅婕1
1 同济大学土木工程学院,上海 200092
2 同济大学工程结构性能演化与控制教育部重点实验室,上海 200092
Research Progress of Cold-bonded Aggregate and Application in Concrete Production
ZHAO Zengfeng1,2, PU Ziying1, LIN Can1, XIAO Jianzhuang1,2,*, YAO Lei1, JI Chenyuan1, LIU Yajie1
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 2553KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于固废制备的陶粒具有密度小、导热系数低等特点,成为替代天然骨料的一个重要发展方向。与烧结法相比,免烧结陶粒不仅可以有效回收利用工业废弃物和副产品,而且具有成本低、耗能低、制备简单等优点,符合国家双碳战略。本文系统梳理归纳了免烧陶粒制备工艺、制备参数及制备原料对陶粒品质的影响规律,得出免烧陶粒混凝土的导热系数低于1.0 W/(m·K),保温性能良好,具有作为保温材料的良好潜力;同时分析了免烧结陶粒替代天然骨料应用于混凝土中对其工作性能、力学性能和耐久性能的影响;阐述了陶粒混凝土作为墙板等构件在建筑上的应用,总结和归纳研究进展,并提出未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵增丰
蒲紫盈
林璨
肖建庄
姚磊
姬宸源
刘雅婕
关键词:  陶粒  免烧(结)陶粒  陶粒混凝土  陶粒混凝土力学及耐久性能  陶粒混凝土墙板    
Abstract: The cold-bonded aggregate based on recycled materials has the characteristics of low density and low thermal conductivity, which becomes an important direction to partially replace the natural aggregates. Compared with the sintering method, the cold-bonded aggregates are not only an effective recycling solution for industrial wastes and by-products, but also have the advantages of low cost, low energy consumption and simple preparation, which is consistent with the low-carbon development strategy. This paper presents the preparation of cold-bonded aggregates and the influence of preparation parameters on the performance of various properties of cold-bonded aggregates. The thermal conductivity of cold-bonded aggregate is less than 1.0 W/(m·K), which has good potential to be used as a thermal insulation material. Meanwhile, the effect of cold-bonded aggregates on the performance of the concrete (including the workability, mechanical properties and durability) based on the partially replacing natural aggregates with cold-bonded aggregates is evaluated. In addition, the application of cold-bonded aggregate concrete as wall panels and other components in construction industry is given. The summary of current state-of-art and perspectives are finally presented.
Key words:  ceramsite    cold-bonded aggregate    cold-bonded aggregate concrete    mechanical behaviour and durability of cold-bonded aggregate concrete    cold-bonded aggregate concrete wall panel
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TU52  
基金资助: 国家自然科学基金(52078358)
通讯作者:  * 肖建庄,教授,博士研究生导师,同济大学土木工程学院长聘教授、广西大学副校长。1989年、1994年、1997年分别获得同济大学学士、硕士、博士学位。国家杰出青年基金获得者,国家重点研发计划首席科学家,德国洪堡学者,教育部新世纪优秀人才支持计划入选者。长期从事再生混凝土材料、结构与3D打印以及混凝土结构减碳设计等基础理论研究、关键技术研发和产业化应用创新。发表SCI论文300余篇,连续9年入选Elsevier中国高被引学者榜单,连续3年入选World’s Top 2% Scientists榜单;著有《再生混凝土》《Recycled Aggregate Concrete Structures》等中英文专著;授权国家发明专利50余件,软件著作40余件。jzx@tongji.edu.cn   
作者简介:  赵增丰,研究员,同济大学土木工程学院博士研究生导师,欧盟玛丽居里人才计划获得者、比利时瓦隆学者、上海领军人才(海外)、上海浦江人才计划入选者。2007年、2009年、2014年分别获得安徽理工大学学士、河海大学硕士、法国里尔第一大学博士学位。曾在法国、比利时等欧盟国家从事关于建筑废物资源化利用科研和教学工作10余年,现主持国家自然科学基金面上项目、科技部国家重点研发计划子课题、上海市科技创新行动计划等10余项研究项目,长期从事再生混凝土基础理论与应用、低碳混凝土与智能建造、淤泥渣土及工业固废资源化利用研究。发表100余篇高水平学术论文,其中SCI收录30余篇,单篇最高引用 330 次。
引用本文:    
赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
ZHAO Zengfeng, PU Ziying, LIN Can, XIAO Jianzhuang, YAO Lei, JI Chenyuan, LIU Yajie. Research Progress of Cold-bonded Aggregate and Application in Concrete Production. Materials Reports, 2024, 38(20): 23100019-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100019  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23100019
1 Aslam M, Shafigh P, Jumaat M Z, et al. Journal of Cleaner Production, 2016, 119, 108.
2 Shafigh P, Jumaat M Z, Mahmud H B, et al. Construction and Building Materials, 2013, 40, 231.
3 Bjegovic D, Stirmer N, Serdar M. Materials and Corrosion, 2012, 63(12), 1087.
4 Oktay H, Yumrutaş R, Akpolat A. Construction and Building Materials, 2015, 96, 217.
5 Alqahtani F K, Zafar I. Construction and Building Materials, 2020, 230(10), 116992.1.
6 Hao D L C, Abd Razak R, Kheimi M, et al. Materials, 2022, 15(11), 3929.
7 Jo B W, Park S K, Park J B. Cement and Concrete Composites, 2007, 29(2), 128.
8 Geetha S, Ramamurthy K. Journal of Cleaner Production, 2010, 18(15), 1563.
9 Chai C J, Song H P, Feng Z J, et al. Clean Coal Technology, 2020, 26(6), 11(in Chinese).
柴春镜, 宋慧平, 冯政君, 等. 洁净煤技术, 2020, 26(6), 11.
10 Li S D, Brick-Tile, 2019, 383(11), 15(in Chinese).
李寿德. 砖瓦, 2019, 383(11), 15.
11 Tajra F, Elrahman M A, Stephan D. Construction and Building Materials, 2019, 225, 29.
12 Ferraro A, Colangelo F, Farina I, et al. Critical Reviews in Environmental Science and Technology, 2020, 51(19), 2197.
13 Kim H K, Jeon J H, Lee H K. Construction and Building Materials, 2012, 29, 193.
14 Demirboğa R, Gül R. Cement and Concrete Research, 2003, 33(5), 723.
15 Li Y P, Wang W, Zhang P, et al. Journal of Hunan University(Natural Sciences), 2018, 45(6), 72(in Chinese).
李玉平, 王伟, 章鹏, 等. 湖南大学学报(自然科学版) 2018, 45(6), 72.
16 Xu G, Shi X. Resources, Conservation and Recycling, 2018, 136, 95.
17 Gao P, Xu Y Q, Cao Y, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 889(in Chinese).
高鹏, 徐悦清, 曹云, 等. 硅酸盐通报, 2021, 40(3), 889.
18 Kong J J, Hu M W, Lou X G, et al. Non-Metallic Mines, 2022, 45(4), 85(in Chinese).
孔建军, 胡名卫, 楼晓刚, 等. 非金属矿, 2022, 45(4), 85.
19 Bao K Y. Study on preparation and properties of solid waste non-buring ceramsite. Master’s Thesis, Yanshan University, China, 2021(in Chinese).
保凯云. 固废免烧陶粒的制备及性能研究. 硕士学位论文, 燕山大学, 2021.
20 Zhu W X, Zhang R D, Zhou H M, et al. Sichuan Building Science. 2018, 44(6), 82(in Chinese).
朱万旭, 张瑞东, 周红梅, 等. 四川建筑科学研究, 2018, 44(6), 82.
21 Wang G, Preparation of green red mud based sintering-free ceramsites and its performance research. Master’s Thesis, Shandong University, China, 2021 (in Chinese).
王冠. 赤泥基绿色免烧结陶粒的制备试验及性能研究. 硕士学位论文, 山东大学, 2021.
22 Cao Y, Liu R, Han Y, et al. Environmental Progress & Sustainable Energy, 2020, 39(5), e13389.
23 Terzić A, Pezo L, Mitić V, et al. Ceramics International, 2015, 41(2), 2714.
24 Liu W B. Preparation of non-fired fly ash ceramsite and researchon ceramsite lightweight aggregate concrete. Master’s Thesis, Hefei University of Technology, China, 2021 (in Chinese).
刘文博. 免烧粉煤灰陶粒制备及陶粒轻骨料混凝土研究. 硕士学位论文, 合肥工业大学, 2021.
25 Sun D S, Wang A G, Hu P H. Materials Reports, 2009, 23(7), 61(in Chinese).
孙道胜, 王爱国, 胡普华. 材料导报, 2009, 23(7), 61.
26 Risdanareni P, Schollbach K, Wang J, et al. Construction and Building Materials, 2020, 259, 119832.
27 Vasugi V, Ramamurthy K. Materials & Design, 2014, 54, 264.
28 Baykal G, Doven A G. Resources Conservation and Recycling, 2000, 30(1), 59.
29 Tajra F, Elrahman M A, Chung S Y, et al. Construction and Building Materials, 2018, 179, 220.
30 Gao S Y. Preparation of high-porosity sintering-free fly ash ceramsite and its thermal insulation properties. Master’s Thesis, Guangxi University of Science and Technology, China, 2019 (in Chinese).
高淑燕. 高气孔率的免烧粉煤灰陶粒的制备及其隔热性能研究. 硕士学位论文, 广西科技大学, 2019.
31 Kockal N U, Ozturan T. Materials & Design, 2011, 32(6), 3586.
32 Gesoglu M, Ozturan T, Guneyisi E. Cement and Concrete Research, 2004, 34(7), 1121.
33 Zou S, Lu J X, Xiao J Z, et al. Construction and Building Materials, 2023, 393, 132080.
34 Arslan H, Baykal G. Environmental Geology, 2006, 50(5), 761.
35 Manikandan R, Ramamurthy K. Cement and Concrete Composites, 2007, 29(6), 456.
36 Manikandan R, Ramamurthy K. Journal of Materials in Civil Engineering, 2009, 21(10), 578.
37 Gesoğlu M, Özturan T, Güneyisi E. Construction and Building Materials, 2007, 21(9), 1869.
38 Colangelo F, Cioffi R. Materials (Basel), 2013, 6(8), 3139.
39 Arslan H, Baykal G. Environmental Geology, 2006, 50, 761.
40 Chiou I J, Wang K S, Chen C H, et al. Waste Management, 2006, 26(12), 1453.
41 Harikrishnan K I, Ramamurthy K. Waste Management, 2006, 26(8), 846.
42 Gesoğlu M, Güneyisi E, Öz H Ö. Materials and Structures, 2012, 45, 1535.
43 Kamal J, Mishra U K. Journal of the Institution of Engineers (India), Series A, 2020, 101, 735.
44 Wen J R. Process study of no-fire fly ash ceramic granules. Master’s Thesis, Chang’an University, China, 2003 (in Chinese).
温久然. 免烧粉煤灰陶粒的工艺研究. 硕士学位论文, 长安大学, 2003.
45 Manikandan R, Ramamurthy K. Cement and Concrete Composites, 2008, 30(9), 848.
46 Güneyisi E, Gesoğlu M,İpek S. Construction and Building Materials, 2013, 47, 358.
47 Zou Z X, Zhang Y, Dong Z B. Coal Conversion, 2007(2), 73(in Chinese).
邹志祥, 张瑜, 董众兵. 煤炭转化, 2007(2), 73.
48 Zhu W X, Feng L, Zhou H M, et al. Concrete, 2017(5), 59(in Chinese).
朱万旭, 酆磊, 周红梅, 等. 混凝土, 2017(5), 59.
49 Gesoğlu M, Güneyisi E, Özturan T, et al. Composites Part B:Engineering, 2014, 60, 757.
50 Peng X, Zhou Y, Jia R, et al. Construction and Building Materials, 2017, 132, 9.
51 Narattha C, Chaipanich A. Journal of Cleaner Production, 2018, 171, 1094.
52 Li X B, Ji Y Q. In:Lightweight Aggregate Industry Development and Engineering Applications - The 11th National Lightweight Aggregate and Lightweight Aggregate Concrete Symposium and the 5th Cross-Strait Lightweight Aggregate Concrete Production and Application Technology Seminary. Ningbo, China, 2012(in Chinese).
刘巽伯, 计亦奇. 轻骨料工业发展及工程应用——第十一届全国轻骨料及轻骨料混凝土学术讨论会暨第五届海峡两岸轻骨料混凝土产制与应用技术研讨会, 宁波, 2012.
53 Güneyisi E, Gesoğlu M, Pürsünlü Ö, et al. Composites Part B:Engineering, 2013, 53, 258.
54 Gong L S. Concrete, 2000(2), 7(in Chinese).
龚洛书. 混凝土, 2000(2), 7.
55 Mu L F, Li S Q, Feng J J. et al. China Concrete And Cement Products, 2019(11), 66(in Chinese).
穆龙飞, 李思琪, 冯竟竟, 等. 混凝土与水泥制品, 2019(11), 66.
56 Kockal N U, Ozturan T. Construction and Building Materials, 2011, 25(3), 1430.
57 GB/T17431. 1-2010. Lightweight aggregate and its test methods-Part1:Lightweight aggregate, Standards Press of China, China, 2010(in Chinese).
GB/T17431. 1-2010. 轻集料及其实验方法第1部分:轻集料, 中国标准出版社, 2010.
58 Zhu R, Wang S Y, Zhan Y J. China Concrete and Cement Products, 2022(5), 67(in Chinese).
朱然, 王圣怡, 占羿箭. 混凝土与水泥制品, 2022(5), 67.
59 Shahane H A, Patel S. Journal of Building Engineering, DOI:10.1016/j.jobe.2020.101997.
60 Chi J M, Huang R, Yang C C, et al. Cement & Concrete Composites, 2003, 25(2), 197.
61 Zhang M H, Gjorv O E. ACI Materials Journal, 1991, 88(3), 240.
62 Bremner T W, Holm T A. Journal of the American Concrete Institute, 1986, 83(2), 244.
63 Yang C C, Huang R. Cement and Concrete Research, 1996, 26(10), 1567.
64 Bentur A, Igarashi S, Kovler K. Cement and Concrete Research, 2001, 31(11), 1587.
65 Li X G, Yan F J, Yue X T, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3407(in Chinese).
李辛庚, 闫风洁, 岳雪涛, 等. 硅酸盐通报, 2020, 39(11), 3407.
66 Wang C B, Zhang M L, Chen C, et al. Concrete, 2013, 288(10), 145(in Chinese).
王长宝, 张茂亮, 陈闯, 等. 混凝土, 2013, 288(10), 145.
67 Gomathi P, Sivakumar A. Construction and Building Materials, 2015, 77, 276.
68 Joseph G, Ramamurthy K. Materials and Structures, 2008, 42(2), 151.
69 Zhang B S, Kong L J, Yuan J, et al. Concrete, 2006(10), 24(in Chinese).
张宝生, 孔丽娟, 袁杰, 等. 混凝土, 2006(10), 24.
70 Yao W. Industrial Construction, 2005(11), 74(in Chinese).
姚武. 工业建筑, 2005(11), 74.
71 Li B, Qian X Q, Lin T L, et al. Concrete, 2022(12), 29(in Chinese).
李彪, 钱晓倩, 林天乐, 等. 混凝土, 2022(12), 29.
72 Zhang W, Yang Q B. Low Temperature Architecture Technology, 2003(5), 4(in Chinese).
张巍, 杨全兵. 低温建筑技术, 2003(5), 4.
73 Qiu J P, Liu Q, Xing J, et al. Metal Mine, 2015(7), 168(in Chinese).
邱景平, 刘骎, 邢军, 等. 金属矿山, 2015(7), 168.
74 Chia K S, Zhang M H. Cement and Concrete Research, 2002, 32(4), 639.
75 Li P F, Li L, Li Y L, et al. Building Structure, 2019, 49(S2), 617(in Chinese).
李鹏飞, 栗磊, 李亚磊, 等. 建筑结构, 2019, 49(S2), 617.
76 Qiu J S, Wang B, Guan X, et al. China Concrete and Cement Products, 2019(11), 61(in Chinese).
邱继生, 王斌, 关虓, 等. 混凝土与水泥制品, 2019(11), 61.
77 Ni Y Z, Liang R M, Ge X Y, et al. Building Structure, 2023, 53(S1), 1574(in Chinese).
倪允忠, 梁汝鸣, 葛序尧, 等. 建筑结构, 2023, 53(S1), 1574.
78 Yi C, Yan S H, Zhu H G, et al. Concrete, 2014(7), 66(in Chinese).
易成, 严事鸿, 朱红光, 等. 混凝土, 2014(7), 66.
79 Zhang G T, Liu S T, Geng T J, et al. Science Technology and Engineering, 2020, 20(29), 12078(in Chinese).
张广泰, 刘诗拓, 耿天娇, 等. 科学技术与工程, 2020, 20(29), 12078.
80 Patel J K, Patil H, Patil Y, et al. Journal of Building Engineering, 2018, 20, 616.
81 Zhang M H, Gjorv O E. Cement and Concrete Research, 1990, 20(4), 610.
82 Lo T Y, Cui H Z. Materials Letters, 2004, 58(6), 916.
83 Kockal N U, Ozturan T. Journal of Hazardous Materials, 2010, 179(1-3), 954.
84 Tajra M A E F, Stephan D. In:International Conference on Sustainable, Environmental Friendly Construction Materials, ICSEFCM. Szczecin, Poland, 2018, pp.35.
85 China Association of Building Energy Efficiency, Institute of Urban-Rural Construction and Development of Chongqing University. Construction and Architecture, 2023(2), 57(in Chinese).
中国建筑节能协会, 重庆大学城乡建设与发展研究院. 建筑, 2023(2), 57.
86 Wang H Y, Zhu Y P, Zhang S F. Jiangxi Jiancai, 2017(14), 4(in Chinese).
王海霞, 朱远平, 张邵峰. 江西建材, 2017(14), 4.
87 Lin Z H, Shi C L, Li C, et al. Chongqing Architecture, 2019, 18(3), 51(in Chinese).
林宗浩, 石从黎, 李城, 等. 重庆建筑, 2019, 18(3), 51.
88 Cavalline T L, Castrodale R W, Freeman C. ACI Materials Journal, 2017, 114, 945.
89 Liu Z C. Preparation and research of high strength light weight aggregate concrete. Master’s Thesis, Tianjin University, China, 2016 (in Chinese).
刘增晨. 高强轻集料混凝土的配制与性能研究. 硕士学位论文, 天津大学, 2016.
90 Huang W, Zhao Y, Zhu A P. Journal of Building Structures, 2019, 40(5), 80(in Chinese).
黄伟, 赵勇, 朱爱萍. 建筑结构学报, 2019, 40(5), 80.
91 Technical specification for lightweight aggregate concrete structures:JGJ 12—2006, China Architecture & Building Press, China, 2006(in Chinese).
轻骨料混凝土结构技术规程:JGJ 12—2006. 中国建筑工业出版社, 2006.
92 Gu C, Zheng X Y, Zhang W H, et al. Journal of Railway Science and Engineering, 2017, 14(3), 528(in Chinese).
顾聪, 郑晓燕, 张文华, 等. 铁道科学与工程学报, 2017, 14(3), 528.
93 Fan J Z. Wall Materials Innovation & Energy Saving in Buildings, 2005(6), 26(in Chinese).
范锦忠. 墙材革新与建筑节能, 2005(6), 26.
94 Huang X L, Bian Z H, Huang S L. Concrete, 2016, 326(12), 123(in Chinese).
黄修林, 卞周宏, 黄绍龙. 混凝土, 2016, 326(12), 123.
95 Liu J, Dong H R, Qin Y Y, et al. Chongqing Architecture, 2018, 17(7), 45(in Chinese).
刘军, 董恒瑞, 秦砚瑶, 等. 重庆建筑, 2018, 17(7), 45.
96 Li B N, The mechanical properties of cold-formed thin-walled steel skeleton-flyash ceramsite concrete wallboard study. Master’s Thesis, Jilin University, China, 2018 (in Chinese).
李贝娜. 冷弯薄壁型钢骨架—粉煤灰陶粒混凝土复合墙板力学性能研究. 硕士学位论文, 吉林大学, 2018.
97 Li C B. The study on a load-bearing, heat-retaining, sandwich composite wall without connection component. Ph D. Thesis, South China University of Technology, China, 2013 (in Chinese).
李从波. 承重保温夹芯无拉接件的复合墙体的研究. 博士学位论文, 华南理工大学, 2013.
98 Fan Y T. Study on bond-slip mechanism between the ceramsite light weight concrete and high-strength concrete. Master’s Thesis, Ningbo University, China, 2020 (in Chinese).
范奕涛. 陶粒混凝土-高强混凝土粘结滑移机理研究. 硕士学位论文, 宁波大学, 2020.
99 Han X X. Analysis of the ceramsite concrete sandwich composite aseismatic wallboard. Master’s Thesis, Henan University, China, 2016 (in Chinese).
韩学行. 陶粒混凝土夹芯保温复合墙板性能分析. 硕士学位论文, 河南大学, 2016.
100 Bao P, Ma S C, Han X X, et al. Journal of Henan University (Natural Science), 2017, 47(5), 591(in Chinese).
鲍鹏, 马少春, 韩学行, 等. 河南大学学报 (自然科学版), 2017, 47(5), 591.
101 Guo J L, Jiang G P, Dai X L. Journal of Water Resources and Architectural Engineering, 2021, 19(6), 144(in Chinese).
郭金龙, 蒋国平, 代学灵, 等. 水利与建筑工程学报, 2021, 19(06), 144.
102 Li J J, Hou H T, Liu H N, et al. New Building Materials, 2014, 41(11), 12(in Chinese).
李晶晶, 侯和涛, 刘海宁, 等. 新型建筑材料, 2014, 41(11), 12.
103 Cao Y G, Ren H B, Liu M Y, et al. Journal of Wuhan University of Technology, 2022, 44(12), 60(in Chinese).
曹玉贵, 任寒冰, 刘沐宇, 等. 武汉理工大学学报, 2022, 44(12), 60.
[1] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[2] 万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
[3] 刘晓明, 张增起, 李宇, 张娜, 王亚光, 张未, 张以河. 赤泥在建筑材料和复合高分子材料中的利用研究进展[J]. 材料导报, 2023, 37(10): 23020109-14.
[4] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[5] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[6] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[7] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[8] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[9] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed