Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21120242-6    https://doi.org/10.11896/cldb.21120242
  无机非金属及其复合材料 |
电解锰渣陶粒共烧结温度影响机理研究
叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪
安徽理工大学材料科学与工程学院,安徽 淮南 232001
Influence Mechanism of EMR Ceramsite Co-sintering Temperature
YE Dongdong, XU Zifang, ZHAO Yifan, YU Xinxin, FU Yuhao
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 5353KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于探究电解锰渣制备陶粒最佳资源化处置途径,关注烧结温度对陶粒制备工艺的影响因素水平。以电解锰渣(EMR)、粉煤灰(CFA)、珍珠岩(P)为原料,采用不同共烧结温度制备陶粒,探究共烧结温度对陶粒物理性能的影响。通过XRD、SEM-EDS、TG-DTG-DSC技术手段表征陶粒物相组成、微观结构及元素分布、物相转变,分析共烧结温度对陶粒性能的关键作用机理。结果表明,共烧结温度升高对筒压强度具有增效,对1 h吸水率、软化系数、球形系数具有减效,最佳共烧结温度为1 160 ℃。分析显示:EMR中二水石膏在共烧结过程中发生分解与排气,产生CaO。硅灰石和钙铝黄长石发生晶型转变产生钙长石,提高了陶粒的强度,且钙长石的含量与共烧结温度和筒压强度成正比。在共烧结过程中,“过烧”出现的液相包覆晶体会提高陶粒强度,但陶粒球体变形却导致真气孔率有所下降。共烧结陶粒通过形成锰钙辉石来实现Mn的固化,陶粒浸出毒性固化率为99.92%,且无放射性。因此,利用EMR制备陶粒是安全可靠的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶东东
徐子芳
赵怡梵
俞欣欣
傅宇豪
关键词:  电解锰渣  共烧结温度  陶粒  Mn固化  钙长石    
Abstract: Based on the exploration of the best resource disposal approach for ceramsite preparation from electrolytic manganese slag, the influence factor level of sintering temperature on ceramsite preparation process was concerned. It is of great significance to explore the influence of sintering temperature on ceramsite preparation process. In this work, electrolytic manganese residue(EMR), coal fly ash(CFA) and perlite(P) were used as raw materials to prepare ceramsite at different co-sintering temperatures to explore the influence of co-sintering temperature on the physical properties of ceramsite. XRD, SEM-EDS and TG-DTG-DSC were used to characterize the phase composition, microstructure, element distribution and phase transition of ceramics, and the mechanism of co-sintering temperature on the properties of ceramics was analyzed. The results show that the increase of co-sintering temperature can enhance the pressure strength of cylinder, and reduce the 1 h water absorption, softening coefficient and spherical coefficient. The optimal co-sintering temperature is 1 160 ℃. In EMR, gypsum dissolves and exhauts gas during co-sintering, resulting in the generation of CaO. The crystalline transformation of wollastonite and gehlenite produces anorthite, which increases the strength of ceramsite, and the content of anorthite is proportional to the co-sintering temperature and the pressure strength of cylinder. In the co-sintering process, the liquid phase of ‘overfiring' coats the crystal, which can further improve the strength of ceramsite, but due to the ceramsite sphere deformation, its comprehensive performance is reduced. The solidification of Mn is realized by the formation of bustamite calcian in co-sintered ceramsite. The solidification rate of ceramsite leaching toxicity test is 99.92%, and there is no radioactivity. Therefore, the preparation of ceramsite by EMR is safe and reliable.
Key words:  electrolytic manganese residue    co-sintering temperature    ceramsite    Mn solidification    anorthite
发布日期:  2022-06-09
ZTFLH:  TB332  
基金资助: 安徽省高等学校研究生科研项目(YJS20210399);安徽理工大学科技创新育人项目(KYX202112);安徽省大学生创新创业训练计划项目(S202110361142X)
通讯作者:  zhfxubao@163.com   
作者简介:  叶东东,2020年7月毕业于安徽理工大学,获得工学学士学位。现为安徽理工大学材料与化工专业硕士研究生,在徐子芳教授的指导下进行研究。目前主要研究领域为电解锰渣资源化利用。
徐子芳,安徽理工大学材料科学与工程学院教授、硕士研究生导师。1998年南京工业大学无机非金属材料专业本科毕业后到安徽理工大学工作至今,2006年安徽理工大学应用化学专业硕士毕业,2009年安徽理工大学环境工程专业博士毕业。目前主要从事固体废弃物综合利用、电致变色玻璃膜等方面的研究工作。发表学术论文40余篇,申请发明专利10项,授权国家发明专利6项,主持项目20余项。
引用本文:    
叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
YE Dongdong, XU Zifang, ZHAO Yifan, YU Xinxin, FU Yuhao. Influence Mechanism of EMR Ceramsite Co-sintering Temperature. Materials Reports, 2022, 36(11): 21120242-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120242  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21120242
1 Xu J R. China Manganese Industry, 2020, 38(6), 1(in Chinese).
徐金荣. 中国锰业, 2020, 38(6), 1.
2 Tao C Y, Li M Y, Liu Z H, et al. Journal of Central South University of Technology, 2009, 16(S1), 309.
3 Zhang C, Wang S, Zhong H, et al. Conservation and Utilization of Mi-neral Resources, 2019, 39(3), 111(in Chinese).
张超, 王帅, 钟宏, 等. 矿产保护与利用, 2019, 39(3), 111.
4 He D J, Shu J C, Wang R, et al. Journal of Hazardous Materials, 2021, 418, 126235.
5 Du B, Ru Z G, Dan Z G, et al. Journal of Guilin University of Technology, 2015, 35(1), 152(in Chinese).
杜兵, 汝振广, 但智钢, 等. 桂林理工大学学报, 2015, 35(1),152.
6 He S C, Jiang D Y, Hong M H, et al. Journal of Cleaner Production, 2021, 306, 127224.
7 Du B, Zhou C B, Zeng M, et al. Environmental Protection of Chemical Industry, 2010, 30(6), 526(in Chinese).
杜兵, 周长波, 曾鸣, 等. 化工环保, 2010, 30(6), 526.
8 Li H L, Li X M, Chen M, et al. Chinese Journal of Environmental Engineering, 2009, 3(9), 1667(in Chinese).
李焕利, 李小明, 陈敏, 等. 环境工程学报, 2009, 3(9), 1667.
9 Lv Y, Li J, Ye H P, et al. Chemosphere, 2020, 256, 127043.
10 Li T P, Zhou X Z, Zeng L Q, et al. China Manganese Industry, 2006(2), 13(in Chinese).
李坦平, 周学忠, 曾利群, 等. 中国锰业, 2006(2), 13.
11 Zhao S Z, Han F L, Wang Y G. Bulletin of the Chinese Ceramic Society, 2017, 36(5), 1766(in Chinese).
赵世珍, 韩凤兰, 王亚光. 硅酸盐通报, 2017, 36(5), 1766.
12 Lan J R, Sun Y, Tian H, et al. Journal of Hazardous Materials, 2021, 411, 124941.
13 Wanme D Z, Li Y X, Tan H B. China Ceramics, 2018, 54(4), 51(in Chinese).
完么东智, 李玉香, 谭宏斌. 中国陶瓷, 2018, 54(4), 51.
14 Song M S, Zhang J, Li Y, et al. Journal of Functional Materials, 2019, 50(8), 8150(in Chinese).
宋谋胜, 张杰, 李勇, 等. 功能材料, 2019, 50(8),8150.
15 Ran L, Liu S Y, Wen Z K. Non-Metallic Mines, 2014, 37(4), 30(in Chinese).
冉岚, 刘少友, 文正康. 非金属矿, 2014, 37(4), 30.
16 Wu F F, Li X P, Zhong H, et al. International Journal of Applied Ceramic Technology, 2016, 13(3), 511.
17 Miao X W, Bai Z T, Qiu G B, et al. Journal of the European Ceramic Society, 2020, 40(8),3249.
18 Sang D, Wang A G, Sun D S, et al. Materials Reports A: Review Papers, 2016, 30(5), 110(in Chinese).
桑迪, 王爱国, 孙道胜, 等. 材料导报:综述篇, 2016, 30(5), 110.
19 Cai C J, Song H P, Feng Z J, et al. Clean Coal Technology, 2020, 26(6), 11(in Chinese).
柴春镜, 宋慧平, 冯政君, 等. 洁净煤技术, 2020, 26(6), 11.
20 Zhan X Y, Wang L A,Wang L, et al. Chemosphere,2021,263,127914.
21 Huang C, Wang F, Tan W F, et al. Non-Metallic Mines, 2013, 36(5), 11(in Chinese).
黄川, 王飞, 谭文发, 等. 非金属矿, 2013, 36(5), 11.
22 Riley C M. Journal of the American Ceramic Society,1951,34(4),121.
23 Tian S, Wang W M, Zhang F, et al. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2011, 47(8), 476(in Chinese).
田仕, 王为民, 张帆, 等. 理化检验(物理分册),2011,47(8),476.
24 Wu J F, Song M S, Xu X H, et al. Advanced Materials Research, 2013, 2605, 785.
25 Qian J S, Hou P K, Wang Z, et al. Materials Reports B: Research Papers, 2009, 23(10), 59(in Chinese).
钱觉时, 侯鹏坤, 王智, 等. 材料导报:研究篇, 2009, 23(10), 59.
26 Zhang Q, Peng B, Chai L Y, et al. Mining and Metallurgical Enginee-ring, 2010, 30(5), 70(in Chinese).
张强, 彭兵, 柴立元, 等. 矿冶工程, 2010, 30(5), 70.
27 Wu J F, Song M S, Xu X H, et al. Journal of Wuhan University of Technology, 2014, 36(7), 6(in Chinese).
吴建锋, 宋谋胜, 徐晓虹, 等. 武汉理工大学学报,2014,36(7),6.
28 Yang X W. Study on preparation of high strength ceramsite based on hazardous waste and mechanism of stable solidification of heavy metals. Master's Thesis, Qilu University of Technology, China, 2021(in Chinese).
杨晓伟. 危废基高强陶粒的制备及重金属稳定固化机理研究. 硕士学位论文, 齐鲁工业大学, 2021.
29 Qin J, Cui C, Cui X Y, et al. Journal of Synthetic Crystals, 2016, 45(5), 1153(in Chinese).
秦娟, 崔崇, 崔晓昱, 等. 人工晶体学报, 2016, 45(5), 1153.
30 Zhao L C, Sun S J. Jilin Geology, 1991(2), 42(in Chinese).
赵良超, 孙淑娟. 吉林地质, 1991(2), 42.
31 Liu H, Zhang W Y. Bulletin of the Chinese Ceramic Society, 2012, 31(4), 822(in Chinese).
刘贺, 章为夷. 硅酸盐通报, 2012, 31(4), 822.
[1] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[2] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[3] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[4] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[5] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed