Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110190-10    https://doi.org/10.11896/cldb.22110190
  金属与金属基复合材料 |
银纳米线透明导电薄膜仿真研究现状
张墅野*, 邵建航, 何鹏*
哈尔滨工业大学材料结构精密焊接与连接全国重点实验室,哈尔滨 150001
Research Progress in Simulation of Silver Nanowire Transparent Conductive Films
ZHANG Shuye*, SHAO Jianhang, HE Peng*
State Key Laboratory of Precision Welding & Joining of Materials ans Structures, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 28886KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 银纳米线薄膜作为新型柔性透明导电薄膜,具有导电性能好、透光率高、成本低和柔性良好等优点。本文从电学、力学和光学三个方面介绍了银纳米线薄膜的仿真原理、仿真工具及发展现状。目前,银纳米线薄膜的电学性能仿真已研究得比较完善,能够从微观到宏观尺度建立精确的模型,常用的节点主导假设(JDA)模型、多节点表示(MNR)模型能够较好地模拟、预测银纳米线薄膜的方阻。银纳米线薄膜力学仿真尚未能建立起完美的宏观模型,只能通过分子动力学方法等对单根或多根银纳米线之间的力学性能进行仿真模拟。银纳米线薄膜的光学性能的仿真主要依靠时域有限差分方法来模拟光与材料的相互作用,依靠该方法能够模拟少量银纳米线的光学性能,并且目前已有建立大型复杂银纳米线薄膜光学模型的尝试。此外,多物理场耦合且能够反映整个银纳米线薄膜的光-电-热-力综合性能的仿真模型仍未建立,未来研究者们还需于此继续深耕。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张墅野
邵建航
何鹏
关键词:  银纳米线  仿真模拟  柔性器件  透明导电薄膜    
Abstract: As thenovel transparent conductive films, silver nanowires film has the advantages of good conductivity, good flexibility, low cost and high light transmittance. In this paper, the principles, tools and research status of various techniques applied in the simulation of silver nanowires thin films were introduced in terms of electrical properties, mechanical properties and optical properties. The simulation research on the electrical properties of silver nanowires thin films has been improved, and it is able to establish a more accurate simulation model from micro to macro. The commonly used models include the junction-dominated assumption (JDA) model, multi-nodal representation (MNR) model, which can simulate and predict the resistance of silver nanowire thin films clearly. The mechanical simulation of silver nanowires thin films failed to establish a macro-level model, and the mechanical properties of single silver nanowires or multiple silver nanowires could only be simulated by molecular dynamics method. FDTD methods have been used to simulate the optical properties of a small number of silver nanowires, and attempts have been made to establish optical models of large and complex silver nanowire thin films. However, a multi-physical field coupled simulation model that can reflect the comprehensive optical, electrical, thermal, and mechanical properties of the silver nanowire film has not yet been established, and future researchers need to continue to work on it.
Key words:  silver nanowires    simulation    flexible device    transparent conductive films
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB31  
基金资助: 黑龙江省自然科学基金(YQ2022E024)
通讯作者:  *张墅野,哈尔滨工业大学电子封装技术专业副教授、博士研究生导师。2012年哈尔滨工业大学电子封装技术专业本科毕业,2014年KAIST韩国先进科学技术院硕士毕业,2017年KAIST韩国先进科学技术院材料科学与工程专业博士毕业。2020年至今于哈尔滨工业大学电子封装技术专业任副教授。目前主要从事先进电子封装、光烧结柔性印刷电子技术、先进纳米材料与高端电子器件系统集成与封装方面的研究工作。发表SCI/EI文章61篇,包括Nano Energy、Progress in Natural Science-Materials International等。获2020年中国机械工业科学技术奖科技进步类特等奖,2019年中国机械工业科学技术科技进步三等奖,2020年中国产学研合作创新成果二等奖。syzhang@hit.edu.cn
何鹏,哈尔滨工业大学电子封装技术专业教授,博士研究生导师。1995年哈尔滨工业大学金属材料及工艺系本科毕业,1997年哈尔滨工业大学硕士毕业,2001年哈尔滨工业大学材料科学与工程学院博士毕业。2008年至今任哈尔滨工业大学先进焊接与连接国家重点实验室教授。目前主要从事钎焊、微连接、连接界面行为与控制的基础理论与实际应用技术研究。主持和参加国家自然科学基金、国家973、863等课题20余项,获教育部自然科学奖一等奖1项,授权国家发明专利52项;已发表论文500余篇。nanojoin@hit.edu.cn   
引用本文:    
张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
ZHANG Shuye, SHAO Jianhang, HE Peng. Research Progress in Simulation of Silver Nanowire Transparent Conductive Films. Materials Reports, 2024, 38(10): 22110190-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110190  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110190
1 Lee J Y, Connor S T, Cui Y, et al. Nano Letters, 2008, 8(2), 689.
2 Wu H, Huang Y A, Xu F, et al. Advanced Materials, 2016, 28(45), 9881.
3 Kim A, Lee H, Kwon H C, et al. Nanoscale, 2016, 8(12), 6308.
4 Kamyshny A, Magdassi S. Chemical Society Reviews, 2019, 48(6), 1712.
5 Ding Y, Cui Y, Liu X, et al. Applied Materials Today, 2020, 20, 100634.
6 Ke S H, Guo P W, Pang C Y, et al. Advanced Materials Technologies, 2020, 5(5), 1901097.
7 Qian H, Ma Y, Yang Q, et al. ACS Nano, 2014, 8(3), 2584.
8 Yu C Y. Study on preparation and reliability protection of silver nanowire transparent electrode. Master’s Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
于春宇. 银纳米线透明电极的制备及可靠性防护研究. 硕士学位论文, 哈尔滨工业大学, 2017.
9 Henley S J, Cann M, Jurewicz I, et al. Nanoscale, 2014, 6(2), 946.
10 Im T H, Lee J H, Wang H S, et al. Materials Today, 2021, 51, 525.
11 Wang B Y, Yoo T H, Lim J W, et al. Small, 2015, 11(16), 190.
12 Li Y, Yuan X, Yang H, et al. Materials, 2019, 12(3), 401.
13 Chen G, Bi L, Yang Z, et al. ACS Applied Materials & Interfaces, 2019, 11(25), 22648.
14 Tseng J Y, Lee L, Huang Y C, et al. Small, 2018, 14(38), 1800541.
15 da Rocha C G, Manning H G, O’Callaghan C, et al. Nanoscale, 2015, 7(30), 13011.
16 Mutiso R M, Sherrott M C, Rathmell A R, et al. ACS Nano, 2013, 7(9), 7654.
17 Jagota M, Tansu N. Scientific Reports, 2015, 5(1), 10219.
18 Bellew A T, Manning H G, Gomes da Rocha C, et al. ACS Nano, 2015, 9(11), 11422.
19 Kim D, Nam J. The Journal of Physical Chemistry C, 2019, 124(1), 986.
20 Hu S W. Study on fabrication and properties of mesh-structured silver nanowire networks. Master’s Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
胡少伟. 纳米银线网格图案层的制备及性能研究. 硕士学位论文, 哈尔滨工业大学, 2018.
21 Leach A M, McDowell M, Gall K. Advanced Functional Materials, 2007, 17(1), 43.
22 Lu Y, Huang J Y, Wang C, et al. Nature Nanotechnology, 2010, 5(3), 218.
23 Pereira Z S, Da Silva E Z. The Journal of Physical Chemistry C, 2011, 115(46), 2287.
24 Lucas M, Leach A M, McDowell M T, et al. Physical Review B, 2008, 77(24), 245420.
25 Narayanan S, Cheng G, Zeng Z, et al. Nano Letters, 2015, 15(6), 4037.
26 Filleter T, Ryu S, Kang K, et al. Small, 2012, 8(19), 2986.
27 Bernal R A, Aghaei A, Lee S, et al. Nano Letters, 2015, 15(1), 139.
28 Qin Q, Yin S, Cheng G, et al. Nature Communications, 2015, 6(1), 1.
29 Zhan H F, Gu Y T, Yan C, et al. Computational Materials Science, 2014, 81, 45.
30 Zhang S B. Computational Materials Science, 2014, 95, 53.
31 Schrenker N J, Xie Z, Schweizer P, et al. ACS Nano, 2020, 15(1), 362.
32 Liang T, Zhou D, Wu Z, et al. Nanoscale, 2018, 10(44), 20565.
33 Kisannagar R R, Jha P, Navalkar A, et al. ACS Omega, 2020, 5(18), 10260.
34 Kang M, Lee H, Hong S, et al. Nanoscale Horizons, 2022, 7(9), 107.
35 Mandal T, Maiti P K, Dasgupta C. Physical Review B, 2012, 86(2), 024101.
36 Garnett E C, Cai W, Cha J J, et al. Nature Materials, 2012, 11(3), 241.
37 Park J H, Hwang G T, Kim S, et al. Advanced Materials, 2017, 29(5), 1603473.
38 Jang Y R, Chung W H, Hwang Y T, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 24099.
39 Liang X, Lu J, Zhao T, et al. Advanced Materials Interfaces, 2019, 6(3), 1801635.
40 Liu J, Ge Y, Zhang D, et al. ACS Applied Nano Materials, 2021, 4(2), 1664.
41 Hu H, Wang Z, Ye Q, et al. ACS Applied Materials & Interfaces, 2016, 8(31), 20483.
42 Chung W H, Jang Y R, Hwang Y T, et al. Nanoscale, 2020, 12(34), 1772.
43 Wang Z. Plasma welding formability of silver nanowires and its application in the cathode of lithium metal. Master’s Thesis, Harbin Institute of Technology, 2018(in Chinese).
王喆. 银纳米线等离子体焊接成形性及在金属锂负极中的应用. 硕士学位论文. 哈尔滨工业大学, 2018.
44 Bergin S M, Chen Y H, Rathmell A R, et al. Nanoscale, 2012, 4(6), 1996.
45 Yan S, Krantz J, Pflaum C, et al. Photonics for Solar Energy Systems IV. SPIE, 2012, 8438, 333.
46 Tao J, Liu N, Li S, et al. Thin Solid Films, 2021, 729, 138679.
47 Hwang H J, Malhotra R. ACS Applied Materials & Interfaces, 2018, 11(3), 3536.
48 Meng F, Peng J, Huang J, et al. Additive Manufacturing, 2022, 51, 102594.
[1] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[2] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[3] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[4] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[5] 曾子粤, 杨建森, 魏永起. 脱硫石膏灌芯墙脱水过程的仿真模拟与分析[J]. 材料导报, 2022, 36(5): 20090275-6.
[6] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[7] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[8] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[9] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[10] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed