Abstract: As thenovel transparent conductive films, silver nanowires film has the advantages of good conductivity, good flexibility, low cost and high light transmittance. In this paper, the principles, tools and research status of various techniques applied in the simulation of silver nanowires thin films were introduced in terms of electrical properties, mechanical properties and optical properties. The simulation research on the electrical properties of silver nanowires thin films has been improved, and it is able to establish a more accurate simulation model from micro to macro. The commonly used models include the junction-dominated assumption (JDA) model, multi-nodal representation (MNR) model, which can simulate and predict the resistance of silver nanowire thin films clearly. The mechanical simulation of silver nanowires thin films failed to establish a macro-level model, and the mechanical properties of single silver nanowires or multiple silver nanowires could only be simulated by molecular dynamics method. FDTD methods have been used to simulate the optical properties of a small number of silver nanowires, and attempts have been made to establish optical models of large and complex silver nanowire thin films. However, a multi-physical field coupled simulation model that can reflect the comprehensive optical, electrical, thermal, and mechanical properties of the silver nanowire film has not yet been established, and future researchers need to continue to work on it.
1 Lee J Y, Connor S T, Cui Y, et al. Nano Letters, 2008, 8(2), 689. 2 Wu H, Huang Y A, Xu F, et al. Advanced Materials, 2016, 28(45), 9881. 3 Kim A, Lee H, Kwon H C, et al. Nanoscale, 2016, 8(12), 6308. 4 Kamyshny A, Magdassi S. Chemical Society Reviews, 2019, 48(6), 1712. 5 Ding Y, Cui Y, Liu X, et al. Applied Materials Today, 2020, 20, 100634. 6 Ke S H, Guo P W, Pang C Y, et al. Advanced Materials Technologies, 2020, 5(5), 1901097. 7 Qian H, Ma Y, Yang Q, et al. ACS Nano, 2014, 8(3), 2584. 8 Yu C Y. Study on preparation and reliability protection of silver nanowire transparent electrode. Master’s Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 于春宇. 银纳米线透明电极的制备及可靠性防护研究. 硕士学位论文, 哈尔滨工业大学, 2017. 9 Henley S J, Cann M, Jurewicz I, et al. Nanoscale, 2014, 6(2), 946. 10 Im T H, Lee J H, Wang H S, et al. Materials Today, 2021, 51, 525. 11 Wang B Y, Yoo T H, Lim J W, et al. Small, 2015, 11(16), 190. 12 Li Y, Yuan X, Yang H, et al. Materials, 2019, 12(3), 401. 13 Chen G, Bi L, Yang Z, et al. ACS Applied Materials & Interfaces, 2019, 11(25), 22648. 14 Tseng J Y, Lee L, Huang Y C, et al. Small, 2018, 14(38), 1800541. 15 da Rocha C G, Manning H G, O’Callaghan C, et al. Nanoscale, 2015, 7(30), 13011. 16 Mutiso R M, Sherrott M C, Rathmell A R, et al. ACS Nano, 2013, 7(9), 7654. 17 Jagota M, Tansu N. Scientific Reports, 2015, 5(1), 10219. 18 Bellew A T, Manning H G, Gomes da Rocha C, et al. ACS Nano, 2015, 9(11), 11422. 19 Kim D, Nam J. The Journal of Physical Chemistry C, 2019, 124(1), 986. 20 Hu S W. Study on fabrication and properties of mesh-structured silver nanowire networks. Master’s Thesis, Harbin Institute of Technology, China, 2018 (in Chinese). 胡少伟. 纳米银线网格图案层的制备及性能研究. 硕士学位论文, 哈尔滨工业大学, 2018. 21 Leach A M, McDowell M, Gall K. Advanced Functional Materials, 2007, 17(1), 43. 22 Lu Y, Huang J Y, Wang C, et al. Nature Nanotechnology, 2010, 5(3), 218. 23 Pereira Z S, Da Silva E Z. The Journal of Physical Chemistry C, 2011, 115(46), 2287. 24 Lucas M, Leach A M, McDowell M T, et al. Physical Review B, 2008, 77(24), 245420. 25 Narayanan S, Cheng G, Zeng Z, et al. Nano Letters, 2015, 15(6), 4037. 26 Filleter T, Ryu S, Kang K, et al. Small, 2012, 8(19), 2986. 27 Bernal R A, Aghaei A, Lee S, et al. Nano Letters, 2015, 15(1), 139. 28 Qin Q, Yin S, Cheng G, et al. Nature Communications, 2015, 6(1), 1. 29 Zhan H F, Gu Y T, Yan C, et al. Computational Materials Science, 2014, 81, 45. 30 Zhang S B. Computational Materials Science, 2014, 95, 53. 31 Schrenker N J, Xie Z, Schweizer P, et al. ACS Nano, 2020, 15(1), 362. 32 Liang T, Zhou D, Wu Z, et al. Nanoscale, 2018, 10(44), 20565. 33 Kisannagar R R, Jha P, Navalkar A, et al. ACS Omega, 2020, 5(18), 10260. 34 Kang M, Lee H, Hong S, et al. Nanoscale Horizons, 2022, 7(9), 107. 35 Mandal T, Maiti P K, Dasgupta C. Physical Review B, 2012, 86(2), 024101. 36 Garnett E C, Cai W, Cha J J, et al. Nature Materials, 2012, 11(3), 241. 37 Park J H, Hwang G T, Kim S, et al. Advanced Materials, 2017, 29(5), 1603473. 38 Jang Y R, Chung W H, Hwang Y T, et al. ACS Applied Materials & Interfaces, 2018, 10(28), 24099. 39 Liang X, Lu J, Zhao T, et al. Advanced Materials Interfaces, 2019, 6(3), 1801635. 40 Liu J, Ge Y, Zhang D, et al. ACS Applied Nano Materials, 2021, 4(2), 1664. 41 Hu H, Wang Z, Ye Q, et al. ACS Applied Materials & Interfaces, 2016, 8(31), 20483. 42 Chung W H, Jang Y R, Hwang Y T, et al. Nanoscale, 2020, 12(34), 1772. 43 Wang Z. Plasma welding formability of silver nanowires and its application in the cathode of lithium metal. Master’s Thesis, Harbin Institute of Technology, 2018(in Chinese). 王喆. 银纳米线等离子体焊接成形性及在金属锂负极中的应用. 硕士学位论文. 哈尔滨工业大学, 2018. 44 Bergin S M, Chen Y H, Rathmell A R, et al. Nanoscale, 2012, 4(6), 1996. 45 Yan S, Krantz J, Pflaum C, et al. Photonics for Solar Energy Systems IV. SPIE, 2012, 8438, 333. 46 Tao J, Liu N, Li S, et al. Thin Solid Films, 2021, 729, 138679. 47 Hwang H J, Malhotra R. ACS Applied Materials & Interfaces, 2018, 11(3), 3536. 48 Meng F, Peng J, Huang J, et al. Additive Manufacturing, 2022, 51, 102594.