Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22090215-14    https://doi.org/10.11896/cldb.22090215
  高分子与聚合物基复合材料 |
生物质基导电水凝胶的研究进展
白忠薛1,2,†, 王学川1,2,†,*, 李佳俊1,2,†, 冯宇宇1,2, 白波涛1,2, 黄梦晨1, 岳欧阳1,2, 刘新华1,2,*
1 陕西科技大学轻工科学与工程学院,轻化工程国家级实验教学示范中心,西安 710021
2 陕西科技大学生物质与功能材料研究所,西安 710021
Advances in Research of Biomass-based Conductive Hydrogels
BAI Zhongxue1,2,†, WANG Xuechuan1,2,†,*, LI Jiajun1,2,†, FENG Yuyu1,2, BAI Botao1,2, HUANG Mengchen1, YUE Ouyang1,2, LIU Xinhua1,2,*
1 National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
2 Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 84900KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着石油危机日趋严重与“绿色发展”观念持续推进,生物质材料凭借其可再生、来源丰富、可生物降解、生物相容性好等诸多优势已成为众多领域的研究热点。生物质基导电水凝胶(Biomass-based conductive hydrogels,BCHs)是以生物质为原料制备的具有导电性质的水凝胶,具有生物质材料良好的生物相容性和生物降解性等本体性能,同时具有水凝胶的柔软特性和导电功能材料的电化学性能。本文首先根据导电原理的不同,将BCHs划分为离子导电、电子导电、离子-电子协同导电三个类型,接着介绍了基于BCHs的柔性可穿戴设备、超级电容器、发电机、智能机器人、组织工程等领域的最新应用研究,最后结合目前研究现状,对BCHs的应用前景和发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白忠薛
王学川
李佳俊
冯宇宇
白波涛
黄梦晨
岳欧阳
刘新华
关键词:  生物质材料  导电水凝胶  导电类型  柔性器件  组织工程    
Abstract: With the increasing severity of the oil crisis and the continuous promotion of the concept of ‘green development’, biomass materials have become the research hotspot in many fields by virtue of their renewable, abundant sources, biodegradability, and good biocompatibility. Biomass-based conductive hydrogels (BCHs) are biomass-based hydrogels with conductive property, which have the ontological properties of biomass materials such as good biocompatibility and biodegradability, as well as the soft property of hydrogels and electrochemical properties of conductive materials. In this paper, firstly, BCHs are classified into three types ion-conducting, electron-conducting, and ion-electron synergistic conducting, according to the different principles of conducting electricity. Then, the latest researches on the application of BCHs flexible wearable devices, supercapacitors, generators, intelligent robots, tissue engineering, and other fields are introduced. Finally, the application prospect and development trend of BCHs are prospected with the current research status.
Key words:  biomass materials    conductive hydrogels    conductive type    flexible device    tissue engineering
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TB381  
基金资助: 国家自然科学基金(2207081675;22278257);中国博士后科学基金(2021M692000);陕西省重点研发计划(2022GY-272);陕西省高校科协青年人才支持计划项目(20200424);教育厅产学研结合创新资助—2018年“蓝火计划(惠州)”(CXZJHZ201801)
通讯作者:  *王学川,陕西科技大学原副校长、二级教授、轻工技术与工程学科带头人、博士研究生导师。1984年毕业于西北轻工业学院获学士学位,1990年毕业于西北轻工业学院获硕士学位,2003年毕业于四川大学获博士学位。入选国家科技部等8部委“新世纪百千万人才工程国家级人选”,享受国务院政府特殊津贴,获国家技术发明二等奖1项、国家级教学成果二等奖1项。主要研究方向为清洁化制革/毛皮/合成革生产技术与理论、生物质资源化及胶原基质生物医用材料、环保型绿色轻纺助剂精细化学品的制备及其作用机理研究、功能高分子材料的结构设计及性能研究等。
刘新华,陕西科技大学副教授、硕士研究生导师。2009—2017年本、硕、博连读于四川大学并获博士学位。现任陕西科技大学生物质与功能材料研究所副所长,陕西省青年人才托举计划入选者。近五年主持国家自然科学基金面上项目、国家自然科学基金青年科学基金项目、陕西省重点研发计划项目、中国博士后科学基金第68批面上项目等10余项。在本学科以及相关领域的学术期刊上以第一作者或通信作者发表SCI科技论文40余篇。授权中国发明专利20余件、国际发明专利3件。主要研究方向为胶原基质生物医用材料、柔性电子传感材料、先进皮革生态化学品等。wxc-mail@163.com;liuxinhua@sust.edu.cn   
作者简介:  白忠薛,2021年6月于陕西科技大学获得工学硕士学位。现为陕西科技大学轻工科学与工程学院博士研究生,在王学川教授和刘新华副教授的指导下进行研究。目前主要研究方向为生物质基多功能柔性传感材料。李佳俊,现为陕西科技大学轻工科学与工程学院本科生,在王学川教授和刘新华副教授的指导下进行研究。目前主要研究方向为生物质基多功能柔性传感材料。 †共同第一作者
引用本文:    
白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
BAI Zhongxue, WANG Xuechuan, LI Jiajun, FENG Yuyu, BAI Botao, HUANG Mengchen, YUE Ouyang, LIU Xinhua. Advances in Research of Biomass-based Conductive Hydrogels. Materials Reports, 2024, 38(4): 22090215-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090215  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22090215
1 Selvaraj T, Perumal V, Khor S F, et al. Materials Research Bulletin, 2020, 126, 110839.
2 Sugiarto S, Pong R R, Tan Y C, et al. Materials Today Chemistry, 2022, 26, 101022.
3 Senevirathna S, Pitawala J, Asela U, et al. Sri Lankan Journal of Applied Sciences, 2022, 1(1), 18.
4 Fu C P, Huang W S, Lu X C, et al. Chinese Science Bulletin, 2022, 67(21), 2473 (in Chinese).
傅超萍, 黄伟森, 卢晓畅, 等. 科学通报, 2022, 67(21), 2473.
5 Pan X, Li Y, Pang W, et al. International Journal of Pharmaceutics, 2022, 617, 121612.
6 Pei X, Wang J, Cong Y, et al. Journal of Polymer Science, 2021, 59(13), 1312.
7 Chao Y, Gao H, Zhu X, et al. Industrial Crops and Products, 2022, 187, 115272.
8 Rana H, Sharma A, Dutta S, et al. Journal of Polymers and the Environment, 2022, 30(12), 4936.
9 Mamidi N, García R G, Martínez J D H, et al. ACS Biomaterials Science & Engineering, 2022, 8(9), 3690.
10 Liu C, Li Y, Zhuang J, et al. Polymers, 2022, 14(18), 3739.
11 Wu Q, Jiang C, Zhang S, et al. Journal of Materials Chemistry A, 2022, 10(32), 16853.
12 Luo B, Wen J, Wang H, et al. Energy & Environmental Materials, 2023, 6(3), e12353.
13 Gong Y, Cheng Y Z, Hu Y C. Progress in Chemistry, 2022, 34(3), 616 (in Chinese).
宫悦, 程一竹, 胡银春. 化学进展, 2022, 34(3), 616.
14 Wang X, Bai Z, Zheng M, et al. Journal of Science: Advanced Materials and Devices, 2022, 7(3), 100451.
15 Liang C, Liu Y, Lu W, et al. Nanoscale, 2022, 14(9), 3346.
16 Li Y, Wang Z, Cai Y, et al. Energy & Environmental Materials, 2022, 5(3), 823.
17 Keplinger C, Sun J Y, Foo C C, et al. Science, 2013, 341(6149), 984.
18 Liu C, Zhang H J, You X, et al. Advanced Electronic Materials, 2020, 6(4), 2000040.
19 Ouyang K, Zhuang J, Chen C, et al. Biomacromolecules, 2021, 22(12), 5033.
20 Li N, Sun D, Su Z, et al. Carbohydrate Polymers, 2021, 269, 118306.
21 Ge W, Cao S, Yang Y, et al. Chemical Engineering Journal, 2021, 408, 127306.
22 Gong X, Zhao C, Wang Y, et al. ACS Biomaterials Science & Enginee-ring, 2022, 8(8), 3633.
23 Deng L, Zhang L M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124220.
24 Yang J, Yao J, Wang S. Carbohydrate Polymers, 2022, 275, 118717.
25 He X, Sun X, Meng H, et al. Journal of Materials Science, 2021, 56(17), 10231.
26 Kasprzak D, Galiński M. Journal of Solid State Electrochemistry, 2021, 25(10), 2549.
27 Yao X, Zhang S, Qian L, et al. Advanced Functional Materials, 2022, 32(33), 2204565.
28 Li L, Meng J, Zhang M, et al. Chemical Communications, 2022, 58(2), 185.
29 Hu C, Paul R, Dai Q, et al. Chemical Society Reviews, 2021, 50(21), 11785.
30 Korupalli C, Li H, Nguyen N, et al. Advanced Healthcare Materials, 2021, 10(6), 2001384.
31 Cai J, Zhang X, Liu W, et al. Polymer, 2020, 202, 122643.
32 Yuan X, Wu P, Gao Q, et al. Materials Horizons, 2022, 9(3), 961.
33 Wang C, Li J, Fang Z, et al. Macromolecular Rapid Communications, 2022, 43(1), 2100543.
34 Xu H, Liu D, Song Y, et al. Composites Science and Technology, 2022, 228, 109679.
35 Cheng J, You L, Cai X, et al. ACS Applied Materials & Interfaces, 2022, 14(23), 26338.
36 Liu C, Wang X, Zhang H J, et al. ACS Applied Materials & Interfaces, 2021, 13(30), 36240.
37 Li W, Tao L Q, Kang M C, et al. Carbohydrate Polymers, 2022, 295, 119854.
38 Li M, Tu Q, Long X, et al. International Journal of Biological Macromolecules, 2021, 166, 1526.
39 Wang Z, Cheng F, Cai H, et al. Carbohydrate Polymers, 2021, 259, 117753.
40 Miao Z, Song Y, Dong Y, et al. Nano Research, 2023, 16, 3165.
41 Peng Z, Wang C, Zhang Z, et al. Advanced Materials Interfaces, 2019, 6(23), 1901393.
42 Tie J, Chai H, Mao Z, et al. Carbohydrate polymers, 2021, 273, 118600.
43 You L, Shi X, Cheng J, et al. Journal of Colloid and Interface Science, 2022, 625, 197.
44 Heng Y, Teng G, Chi Y, et al. Biomacromolecules, 2022, 23(3), 913.
45 Furlani F, Montanari M, Sangiorgi N, et al. Biomaterials Science, 2022, 10(8), 2040.
46 Zhou C, Wu T, Xie X, et al. European Polymer Journal, 2022, 177, 111454.
47 Xu T, Liu K, Sheng N, et al. Energy Storage Materials, 2022, 48, 244.
48 Zhang Y, Li M, Han X, et al. Chemical Physics Letters, 2021, 769, 138437.
49 Zhang W, Wen J Y, Ma M G, et al. Journal of Materials Research and Technology, 2021, 14, 555.
50 Guo Z, Liu Z, Liu W, et al. Journal of Nanoparticle Research, 2021, 23(10), 222.
51 Xiao G, Wang Y, Zhang H, et al. International Journal of Biological Macromolecules, 2021, 170, 272.
52 Chen J, Wang X, Dao L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128190.
53 Cui C, Fu Q, Meng L, et al. ACS Applied Bio Materials, 2021, 4(1), 85.
54 Fukada K, Tajima T, Seyama M. ACS Applied Materials & Interfaces, 2021, 13(49), 59006.
55 Fu C, Lin J, Tang Z, et al. International Journal of Biological Macromolecules, 2022, 201, 104.
56 Lee Y, Song W J, Sun J Y. Materials Today Physics, 2020, 15, 100258.
57 Fan L, Liu C, Chen X, et al. Advanced Science, 2022, 9(13), 2105586.
58 Mishra S, Mohanty S, Ramadoss A. ACS Sensors, 2022, 7(9), 2495.
59 Cheng Y, Wang K, Xu H, et al. Analytical and Bioanalytical Chemistry, 2021, 413(24), 6037.
60 Qin T, Liao W, Yu L, et al. Journal of Polymer Science, 2022, 60(18), 2607.
61 Wang P, Pei D, Wang Z, et al. Chemical Engineering Journal, 2020, 398, 125540.
62 Liu J, Bao S, Ling Q, et al. Polymer, 2022, 240, 124513.
63 王学川, 白忠薛, 刘新华, 等. 中国专利, ZL202210294390. 2, 2023.
64 Wei Y, Xiang L, Zhu P, et al. Chemistry of Materials, 2021, 33(22), 8623.
65 Ling Q, Ke T, Liu W, et al. Industrial & Engineering Chemistry Research, 2021, 60(50), 18373.
66 Fan X, Geng J, Wang Y, et al. Polymer, 2022, 246, 124769.
67 Peng Y, Pi M, Zhang X, et al. Polymer, 2020, 196, 122469.
68 Li Y, Liu X, Gong Q, et al. International Journal of Biological Macromolecules, 2021, 172, 41.
69 Jiang L, Liu J, He S, et al. Chemical Engineering Journal, 2022, 430, 132653.
70 Xu R, Qu L, Tian M. Soft Matter, 2021, 17(40), 9014.
71 Fan X, Zhao L, Ling Q, et al. Industrial & Engineering Chemistry Research, 2022, 61(10), 3620.
72 Bai Y, Bi S, Wang W, et al. Soft Materials, 2022, 20(4), 444.
73 Gu P, Liu W, Hou Q, et al. Journal of Materials Chemistry A, 2021, 9(25), 14233.
74 Peng Z, Zhong W. ACS Sustainable Chemistry & Engineering, 2020, 8(21), 7879.
75 Ke S, Wang Z, Zhang K, et al. Polymers, 2020, 12(6), 1369.
76 Zhang X, Zhao J, Xia T, et al. Energy Storage Materials, 2020, 31, 135.
77 Yang L, Song L, Feng Y, et al. Journal of Materials Chemistry A, 2020, 8(25), 12314.
78 Dang C, Shao C, Liu H, et al. Nano Energy, 2021, 90, 106619.
79 Su Z, Yang Y, Huang Q, et al. Progress in Materials Science, 2022, 125, 100917.
80 Wang Y, Zhang L, Lu A. Journal of Materials Chemistry A, 2020, 8(28), 13935.
81 Mondal A K, Wu S, Xu D, et al. International Journal of Biological Macromolecules, 2021, 187, 189.
82 Mondal A K, Xu D, Wu S, et al. International Journal of Biological Macromolecules, 2022, 207, 48.
83 Qin C, Lu A. Carbohydrate Polymers, 2021, 274, 118667.
84 Zhang Y, Mohebbi P A, Mao J, et al. International Journal of Biological Macromolecules, 2021, 193, 941.
85 高书燕, 白照雷, 康萌萌, 等. 中国专利, CN202210694701. 4, 2022.
86 Bi X, Huang R. Materials & Design, 2022, 222, 111065.
87 Li G, Li C, Li G, et al. Small, 2022, 18(5), 2101518.
88 Goyal R, Mitra S. Frontiers in Materials, 2022, 9, 143.
89 Zhu K, Hu J, Zhang L. Cellulose, 2019, 26(17), 9085.
90 Liu C J. Preparation of guar gum based hydrogels and application of flexible clawed robot. Master’s Thesis, Qufu Normal University, China, 2019 (in Chinese).
刘传杰. 瓜尔胶基水凝胶的制备及其在柔性夹爪机器人中的应用探索. 硕士学位论文, 曲阜师范大学, 2019.
91 Cheng Y, Chan K H, Wang X Q, et al. ACS Nano, 2019, 13(11), 13176.
92 Cao Q, Liu N, Xiao Y, et al. ACS Applied Polymer Materials, 2021, 3(2), 1182.
93 Zhan Y, Xing Y, Ji Q, et al. International Journal of Biological Macromolecules, 2022, 212, 202.
94 Askari M, Afzali Naniz M, Kouhi M, et al. Biomaterials Science, 2021, 9(3), 535.
95 Freedman B R, Mooney D J. Advanced Materials, 2019, 31(19), 1806695.
96 Liu Z, Wan X, Wang Z L, et al. Advanced Materials, 2021, 33(32), 2007429.
97 Sun Z, Yang L, Zhao J, et al. Journal of the Electrochemical Society, 2020, 167(4), 047515.
98 Fan C, Yang W, Zhang L, et al. Biomaterials, 2022, 288, 121689.
99 Yang B, Liang C, Chen D, et al. Bioactive Materials, 2022, 15, 103.
100 Zheng M, Wang X, Yue O, et al. Biomaterials, 2021, 276, 121026.
101 宣红云, 张卓君, 袁卉华, 等. 中国专利, CN202210239006. 9, 2022.
102 Zhang L, Li T, Yu Y, et al. Bioactive Materials, 2023, 20, 339.
[1] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[2] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[3] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[4] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[5] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[6] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[7] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[8] 翟俊俊, 赵思, 肖秦箭, 李粤, 王唯, 徐贵贵, 李草, 匡映. 生物质气凝胶的疏水改性及应用研究进展[J]. 材料导报, 2022, 36(23): 20120203-15.
[9] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[10] 樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
[11] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[12] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[13] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[14] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[15] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed