Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21090179-8    https://doi.org/10.11896/cldb.21090179
  金属与金属基复合材料 |
可降解生物医用多孔Zn基支架研究进展
赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔
河北工业大学材料科学与工程学院,河北省新型功能材料重点实验室,天津 300130
Research Progress of Degradable Porous Zn-based Scaffolds for Biomedical Applications
ZHAO Lichen, ZHANG Shuo, YUAN Pengkai, WANG Xin, QI Yumin, WANG Tiebao, CUI Chunxiang
Key Lab. for New Type of Functional Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
下载:  全 文 ( PDF ) ( 5945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,治疗创伤、先天畸形、肿瘤组织切除等原因造成的大段骨缺损仍是骨科手术面临的主要挑战。利用骨组织工程支架代替自体骨移植在缺损部位进行骨重建为解决该问题带来新的方案。鉴于理想骨组织工程支架应具备良好生物相容性、适宜生物降解性、与骨组织相匹配的力学性能以及抗菌性等特征,多孔Zn基支架可能成为理想骨组织工程支架的最佳候选者。然而,近些年的研究发现目前开发的多孔Zn基支架存在力学性能差、体外浸泡及植入体内初期降解速率相对较快导致过量Zn2+释放、高浓度Zn2+能够抑菌杀菌但也会使Zn基支架细胞毒性增强进而导致支架植入体内后出现骨整合延迟等问题。鉴于此,近些年关于多孔Zn基支架的研究主要聚焦于改善支架力学性能、调控支架降解速率,同时赋予支架抑菌杀菌性能和良好生物相容性等方面。研究者们主要采取了对多孔Zn支架进行合金化处理、控制孔隙率、控制孔隙形貌和尺寸等手段来提高多孔Zn基支架的力学性能,同时实现对多孔Zn基支架降解速率的调控。此外,也有研究者利用电偶腐蚀原理调控多孔支架的降解速率。由于多孔Zn基支架降解过程中释放的Zn2+严重影响支架的抑菌杀菌性能和生物相容性,且抑菌杀菌性能和良好生物相容性对Zn2+浓度需求恰好相反,故目前对于同时赋予支架抑菌杀菌性能和良好生物相容性的有效手段仍在探索研究中。
本文归纳了可降解多孔Zn基骨组织工程支架在制备方法、力学性能、生物降解性能、抑菌杀菌性能和生物相容性等方面的研究进展,分析了多孔Zn基骨组织工程支架面临的问题并展望了其前景,以期为制备力学性能优异、降解速率适宜可控并同时具备抑菌杀菌性能和良好生物相容性的多孔Zn基骨组织工程支架提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立臣
张朔
袁鹏凯
王新
戚玉敏
王铁宝
崔春翔
关键词:  可降解金属  骨组织工程  多孔锌支架  腐蚀  抗菌性  细胞毒性    
Abstract: Treatment of large bone defects caused by trauma, congenital anomalies, and tissue resection due to cancer is still one of the major challenges in orthopedic surgery at present. The use of bone tissue engineering scaffolds instead of autologous bone grafts to reconstruct bone tissue at the defect site brings a new solution to this problem. Considering that the ideal bone tissue engineering scaffold should have good biocompatibility, suitable biodegradability, mechanical properties matching the bone tissue, and antibacterial property, the porous Zn-based scaffold may become the best candidate for the ideal bone tissue engineering scaffold. However, investigation results in recent years show that the currently developed porous Zn-based scaffolds have poor mechanical properties, a relatively fast degradation rate at the initial stage of immersion in vitro or implantation in vivo and excessive Zn2+ release. Although Zn2+ with high concentrations can inhibit bacteria and kill bacteria, the cytotoxicity of the scaffold caused by the Zn2+ is also improved. As a result, the bone integration ability of the scaffold in vivo can be delayed. In view of the fact, the research on the porous Zn-based scaffolds in recent years has mainly focused on improving the mechanical properties of the scaffold, regulating the degradation rate of the scaffold, and imparting antibacterial and bactericidal properties and good biocompatibility to the scaffold material. The researchers mainly adopted methods such as alloying, controlling the porosity, and controlling the pore morphology and pore size of the porous scaffold to improve the mechanical properties of the porous Zn-based scaffold and simultaneously regulate the degradation rate of the scaffold. Besides that, some researchers have tried to control the degradation rate of porous Zn-based scaffolds by using galvanic corrosion. Because the released Zn2+ during degradation process seriously affects the antibacterial and bactericidal properties and biocompatibility of the scaffold material, and the antibacterial and bactericidal properties and good biocompatibility have exactly the opposite requirements for the Zn2+ concentration, therefore effective methods for simultaneously enduing the scaffold with antibacterial and bactericidal properties and good biocompatibility are still being explored and investigated. This review offers a retrospection of the research efforts to the preparation methods, mechanical properties, biodegradability, antibacterial and bactericidal properties, and biocompatibility of the degradable porous Zn-based bone tissue engineering scaffolds. Then we analysed the problems of the porous Zn-based scaffolds and looked forward to its prospects. We hope that this review will help to prepare a porous Zn-based scaffold with excellent mechanical properties, suitable and controllable degradation rate, antibacterial and bactericidal properties, and good biocompatibility.
Key words:  biodegradable metals    bone tissue engineering    porous Zn scaffolds    corrosion    antibacterial property    cytotoxicity
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TG146.1  
  R318.08  
基金资助: 河北省高等学校科学技术研究项目(ZD2021034)
通讯作者:  赵立臣,通信作者,河北工业大学,副教授。2011年毕业于河北工业大学材料科学与工程学院,获得材料学博士学位。主要研究方向为可降解生物医用金属材料和金属基复合材料。
崔春翔,通信作者,河北工业大学,教授,博士研究生导师,1996年毕业于上海交通大学材料科学与工程学院,获得材料学博士学位。主要研究方向为金属基复合材料、磁性材料和高强高韧有色金属材料等。   
引用本文:    
赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
ZHAO Lichen, ZHANG Shuo, YUAN Pengkai, WANG Xin, QI Yumin, WANG Tiebao, CUI Chunxiang. Research Progress of Degradable Porous Zn-based Scaffolds for Biomedical Applications. Materials Reports, 2023, 37(11): 21090179-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090179  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21090179
1 He J, Fang J, Wei P B, et al. Acta Biomaterialia, 2021, 121, 665.
2 Van Bael S, Chai Y C, Truscello S, et al. Acta Biomaterialia, 2012, 8, 2824.
3 Martin J S, April M C, Girish P, et al. Developmental Biology and Musculoskeletal Tissue Engineering Principles and Applications. Academic Press, Salt Lake City, 2018, pp. 125.
4 Zhang Z X, Gu B B, Zhang W J, et al. Applied Surface Science, 2012, 258, 6504.
5 Moonga B S, Dempster D W. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 1995, 10, 453.
6 Bowen P K, Drelich J, Goldman J. Advanced Materials, 2013, 25, 2577.
7 Zhao L C, Zhang Z, Song Y T, et al. Materials & Design, 2016, 108, 136.
8 Zhao L C, Wang X, Wang T B, et al. Materials Letters, 2019, 247, 75.
9 Xie Y, Zhao L C, Zhang Z, et al. Materials Chemistry and Physics, 2018, 219, 433.
10 Hou Yi, Jia G Z, Yue R, et al. Materials Characterization, 2018, 137, 162.
11 Li Y, Pavanram P, Zhou J, et al. Acta Biomaterialia, 2020, 101, 609.
12 Li Y, Pavanram P, Zhou J, et al. Biomaterials Science, 2020, 8, 2404.
13 Yang Y W, Cheng Y, Peng S P, et al. Bioactive Materials, 2021, 6, 1230.
14 Lietaert K, Zadpoor A A, Sonnaert M, et al. Acta Biomaterialia, 2020, 110, 289.
15 Wen P, Qin Y, Chen Y Z, et al. Journal of Materials Science & Techno-logy, 2019, 35, 368.
16 Qin Y, Wen P, Voshage M, et al. Materials & Design, 2019, 181, 107937.
17 Tong X, Shi Z M, Xu L C, et al. Acta Biomaterialia, 2020, 102, 481.
18 Cˇapek J, Jablonská E, Lipov J, et al. Materials Chemistry and Physics, 2018, 203, 249.
19 ?apek J, Pinc J, Msallamová ?, et al. Journal of Thermal Spray Techno-logy, 2019, 28, 826.
20 Yusop A H, Bakir A A, Shaharom N A, et al. International Journal of Biomaterials, 2012, 2012, 1.
21 Lietaert K, Van Deursen J, Lapauw T, et al. Materials Characterization, 2019, 157, 109895.
22 Zadpoor A A. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70,1.
23 Wang X J, Xu S Q, Zhou S W, et al. Biomaterials, 2016, 83, 127.
24 Cockerill I, Su Y C, Sinha S, et al. Materials Science & Engineering C, 2020, 110, 110738.
25 Staiger M P, Pietak A M, Huadmai J, et al. Biomaterials, 2006, 27, 1728.
26 Zhao L C, Xie Y, Zhang Z, et al. Materials Characterization, 2018, 144, 227.
27 Zhuang H Y, Han Y, Feng A L. Materials Science & Engineering C, 2008, 28, 1462.
28 Seyedraoufi Z S, Mirdamadi S. Materials Chemistry and Physics, 2014, 148, 519.
29 Gu X N, Zhou W R, Zheng Y F, et al. Materials Letters, 2010, 64, 1871.
30 Li Y, Jahr H, Lietaert K, et al. Acta Biomaterialia, 2018, 77, 380.
31 Li Y, Jahr H, Pavanram P, et al. Acta Biomaterialia, 2019, 96, 646.
32 Li H F, Xie X H, Zheng Y F, et al. Scientific Reports, 2015, 5, 1.
33 Sikora-Jasinska M, Mostaed E, Mostaed A, et al. Materials Science & Engineering C, 2017, 77, 1170.
34 Tang Z B, Niu J L, Huang H, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 182.
35 Shi Z Z, Yu J, Liu X F, et al. Journal of Materials Science & Technology, 2018, 34, 1008.
36 Wang C, Yang H T, Li X, et al. Journal of Materials Science & Technology, 2016, 32, 909.
37 Zhang Y, Yan Y, Xu X M, et al. Materials Science & Engineering C, 2019, 99, 1021.
38 Shi Z Z, Yu J, Liu X F, et al. Materials Science & Engineering C, 2019, 99, 969.
39 Yang H T, Qu X H, Lin W J, et al. ACS Biomaterials Science & Engineering, 2019, 5, 453.
40 Drelich A J, Zhao S, Guillory Ⅱ R J, et al. Acta Biomaterialia, 2017, 58, 539.
41 Yang H T, Wang C, Liu C Q, et al. Biomaterials, 2017, 145, 92.
42 Su Y C, Yang H T, Gao J L, et al. Advanced Science, 2019, 6, 1900112.
43 Hetrick E M, Schoenfisch M H. Chemical Society Reviews, 2006, 35, 780.
44 Guo Z J, Chen C, Gao Q, et al. Materials Letters, 2014, 137, 464.
45 Niu J L, Tang Z B, Huang H, et al. Materials Science & Engineering C, 2016, 69, 407.
46 Su Y C, Wang K, Gao J L, et al. Acta Biomaterialia, 2019, 98, 174.
47 Wang J L, Witte F, Xi T F, et al. Acta Biomaterialia, 2015, 21, 237.
48 Yang H T, Qu X H, Lin W J, et al. Acta Biomaterialia, 2018, 71, 200.
49 He J, Li D W, He F L, et al. Materials Science & Engineering C, 2020, 117, 111295.
50 Yuan W, Xia D D, Zheng Y F, et al. Acta Biomaterialia, 2020, 105, 290.
51 Kubásek J, Vojtěch D, Jablonská E, et al. Materials Science & Enginee-ring C, 2016, 58, 24.
52 Kobe K, Willbold E, Morgenthal I, et al. Acta Biomaterialia, 2013, 9, 8611.
[1] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[2] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[3] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[4] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[5] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[6] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[7] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[8] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[9] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[10] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[11] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[12] 侯继禹, 王保杰, 许凯, 许道奎, 孙杰. 镁合金负差数效应的研究进展[J]. 材料导报, 2023, 37(12): 21070256-7.
[13] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[14] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[15] 刘泽辉, 杨银辉, 张凤珍, 王刘行. 大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究[J]. 材料导报, 2023, 37(12): 22010176-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed