Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050151-10    https://doi.org/10.11896/cldb.21050151
  金属与金属基复合材料 |
自感知发光涂层在腐蚀监测中的研究进展
陈昊翔1, 李伟华2,*
1 中交四航工程研究院有限公司,广州 510230
2 中山大学化学工程与技术学院,广东 珠海 519082
Research Progress on Self-sensing Luminescent Coating in Corrosion Monitoring
CHEN Haoxiang1, LI Weihua2,*
1 CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082,Guangdong, China
下载:  全 文 ( PDF ) ( 6321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在工程结构中采用自感知发光涂层,为大面积结构的腐蚀检测提供了一种简便高效、结果直观的新手段,且能够实现对检测人员或设备难以触及的结构区域的腐蚀检测,因而自感知发光涂层越来越受到腐蚀科学研究者的关注。本文结合近些年自感知发光涂层的研究进展,介绍了自感知发光涂层的种类和实现腐蚀检测的作用机制,重点围绕具有工程应用前景的pH自感知发光涂层、微裂纹自感知发光涂层、离子自感知发光涂层、多功能感知发光涂层等展开讨论,对涂层中指示剂和微胶囊的存在形式、颜色变化、稳定性等方面进行剖析,明确涂层中指示剂的不同存在形式对感知效果的影响,从自感知涂层荧光效果、荧光状态、微胶囊稳定性、多功能性等角度分类阐述了自感知发光涂层在发展过程中出现的问题、解决办法以及发展状况,最后对自感知发光涂层的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈昊翔
李伟华
关键词:  自感知  发光涂层  腐蚀监测  pH  离子  微裂纹  多功能    
Abstract: The use of self-sensing luminescent coatings in engineering presents a novel method of corrosion detection in large-area structures, which is not only simple, efficient and intuitive but also enables corrosion detection in awkward parts that are difficult to access. Consequently, this method has been receiving increasing attention from corrosion science researchers. With regard to the recent research progress, in this paper, various types of self-sensing luminescent coatings and their corrosion detection mechanisms are discussed, with a focus on those with enginee-ring application prospects including pH-sensing, microcrack-sensing, ion-sensing and multifunctional coatings. By analyzing the existence forms, colour changes, and stability of the indicators and microcapsules within the coatings, we clarified the influence of different existence forms of indicators on the detection effect. From perspectives of fluorescence effect, fluorescence state, microcapsule stability, and multifunctionality of the coatings, this paper elaborates the problems encountered during the development of self-sensing luminescent coatings and the possible solutions to these problems, in addition to their current status. Finally, we discuss the development trend of the self-sensing luminescent coatings.
Key words:  self-sensing    luminous coating    corrosion monitoring    pH    ion    microcrack    multifunction
发布日期:  2023-02-08
ZTFLH:  O64  
基金资助: 国家杰出青年科学基金(51525903);广东省国际科技合作项目(2019A050510020)
通讯作者:  *李伟华,中山大学教授、博士研究生导师,国家杰出青年科学基金获得者。1993年本科毕业于青岛化工学院,2003年硕士毕业于青岛科技大学,2006年博士毕业于中国海洋大学。承担国家杰青、科技部863、支撑计划等10余项国家级课题,出版学术著作5部。发表SCI收录论文200余篇,EI收录51篇,被SCI总引2 000余次。获第一发明人授权发明专利28项,参编行业标准10余项。致力于海洋恶劣环境下海工材料腐蚀诱发机理、功能化防护材料以及防御调控新技术的前沿性和创新性研究。   
作者简介:  陈昊翔,2016年本科毕业于武汉轻工大学,2019年6月毕业于中山大学,获得工程硕士学位。现就职于中交四航工程研究院有限公司。目前主要研究方向为工程材料的腐蚀与防护。
引用本文:    
陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
CHEN Haoxiang, LI Weihua. Research Progress on Self-sensing Luminescent Coating in Corrosion Monitoring. Materials Reports, 2023, 37(2): 21050151-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050151  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050151
1 Hou B, Li X, Ma X, et al. npj Materials Degradation, 2017, 1(1), 4.
2 Olajire A A. Journal of Molecular Liquids, 2018, 269, 572.
3 Song D, Wan H, Tu X, et al. Progress in Organic Coatings, 2020, 142, 105558.
4 Patrick J F, Robb M J, Sottos N R, et al. Nature, 2016, 540(7633), 363.
5 Abdel-Rehim S S, Khaled K F, Abd-Elshafi N S. Electrochimica Acta, 2006, 51(16), 3269.
6 He Y, Zhong X, Hu J, et al. Corrosion Science, 2020, 175, 108880.
7 Goffin B, Banthia N, Yonemitsu N. Construction and Building Materials, 2020, 263, 120162.
8 Majhi S, Mukherjee A, George N V, et al. Mechanical Systems and Signal Processing, 2021, 149, 107176.
9 Patil S, Karkare B, Goyal S. Construction and Building Materials, 2014, 68, 326.
10 Li C, Qiao X, Wang T, et al. Progress in Natural Science:Materials International, 2018, 28(1), 90.
11 Dong B, Fang G, Liu Y, et al. Cement and Concrete Research, 2017, 100, 311.
12 Van Steen C, Pahlavan L, Wevers M, et al. Construction and Building Materials, 2019, 197, 21.
13 Maia F, Tedim J, Bastos A C, et al. RSC Advances, 2014, 4(34), 17780.
14 Wang J P, Song X, Wang J K, et al. Advanced Materials Interfaces, 2019, 6(10), 1900055.
15 Lee T H, Song Y K, Park S H, et al. Applied Surface Science, 2018, 434, 1327.
16 Jurmanović S, Kordić Š, Steinberg M D, et al. Thin Solid Films, 2010, 518(8), 2234.
17 Calle L M, Li W, Makhlouf A S H. Handbook of smart coatings for materials protection, Woodhead Publishing, England, 2014.
18 Xu R, Wu Q, Xing C, et al. Polyhedron, 2021, 197, 115056.
19 Nguyen T H, Venugopala T, Chen S, et al. Sensors and Actuators B:Chemical, 2014, 191, 498.
20 Liu G, Wheat H G. Journal of the Electrochemical Society, 2009, 156(4), C160.
21 Zhang Y, Zhang L. Microchemical Journal, 2020, 159, 105394.
22 Lyu J, Yue Q X, Ding R, et al Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 309.
23 Laramie M D, Levitz A, Henary M. Sensors and Actuators B:Chemical, 2017, 243, 1191.
24 Kumar R, Yadav R, Kolhe M A, et al. Polymer, 2018, 136, 157.
25 Augustyniak A, Ming W. Progress in Organic Coatings, 2011, 71(4), 406.
26 Uzundal C B, Ulgut B. Progress in Organic Coatings, 2018, 122, 72.
27 Wang J P, Song Y, Wang J K, et al. Macromolecular Materials and Engineerin, 2017, 302(9), 1700128.
28 Su F, Du X, Shen T, et al. Progress in Organic Coatings, 2021, 153, 106122.
29 Saini A, Messenger H, Kisley L. ACS Applied Materials & Interfaces, 2021, 13(1), 2000.
30 Zhang J, Frankel G S. Corrosion, 1999, 55(10), 957.
31 Johnson R. Computer Music Journal, 1994, 18(3), 25.
32 Dararatana N, Seidi F, Crespy D. ACS Applied Materials & Interfaces, 2018, 10(24), 20876.
33 Maia F, Tedim J, Bastos A C, et al. Nanotechnology, 2013, 24(41), 415502.
34 Exbrayat L, Salaluk S, Uebel M, et al. ACS Applied Nano Materials, 2019, 2(2), 812.
35 Alizadeh M, Sarabi A A. Progress in Organic Coatings, 2019, 134, 78.
36 Augustyniak A, Tsavalas J, Ming W. ACS Applied Materials & Interfaces, 2009, 1(11), 2618.
37 Roshan S, Dariani A A S, Mokhtari J. Applied Surface Science, 2018, 440, 880.
38 Bryant D E, Greenfield D. Progress in Organic Coatings, 2006, 57(4), 416.
39 Dhole G S, Gunasekaran G, Ghorpade T, et al. Progress in Organic Coatings, 2017, 110, 140.
40 Dhole G S, Gunasekaran G, Naik R B, et al. Corrosion, 2016, 73(4), 326.
41 Dhole G S, Gunasekaran G, Singh S K, et al. Progress in Organic Coatings, 2015, 89, 8.
42 Tian X L, Feng C, Zhao X H. ACS Omega, 2020, 5(34), 21679.
43 Wang H, Fan Y, Tian L, et al. Materials Letters, 2020, 265, 127419.
44 Ma L, Ren C, Wang J, et al. Chemical Engineering Journal, 2021, 421, 127854.
45 Sibi M P, Zong Z. Progress in Organic Coatings, 2003, 47(1), 8.
46 Wang G, Wu Q, Zhou H, et al. Construction and Building Materials, 2021, 284, 122821.
47 Ju X, Wu L, Lin C, et al. Construction and Building Materials, 2021, 278, 122370.
48 Dehghan A, Peterson K, Riehm G, et al. Construction and Building Materials, 2017, 148, 85.
49 Ma A, Rosenzweig Z. Analytical Chemistry, 2004, 76(3), 569.
50 Zhang Z, Gao Y, Li P, et al. Chinese Chemical Letters, 2020, 31(10), 2725.
51 Zhang F, Ma C, Jiao Z, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 228, 117729.
52 Kim J, Lee S, Kim S, et al. Dyes and Pigments, 2020, 177, 108291.
53 Kamel R M, El-Sakka S S, Bahgat K, et al. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 411, 113218.
54 He Y X, Zhu G M, Wu Z P, et al. Functional Material, 2015, 46(2), 2144(in Chinese).
何永兴, 朱光明, 邬治平, 等. 功能材料, 2015, 46(2), 2144.
55 Ding L, Li Z, Ding Q, et al. Sensors and Actuators B:Chemical, 2018, 260, 763.
56 Crenshaw B R, Weder C. Macromolecules, 2006, 39(26), 9581.
57 Bruns N, Pustelny K, Bergeron L M, et al. Angewandte Chemie International Edition, 2009, 48(31), 5666.
58 Ikawa T, Shiga T, Okada A. Journal of Applied Polymer Science, 1997, 66(8), 1569.
59 Donati F, Pucci A, Cappelli C, et al. The Journal of Physical Chemistry B, 2008, 112(12), 3668.
60 Kinami M, Crenshaw B R, Weder C. Chemistry of Materials, 2006, 18(4), 946.
61 Nallicheri R A, Rubner M F. Macromolecules, 1991, 24(2), 517.
62 Lee S B, Koepsel R R, Russell A J. Nano Letters, 2005, 5(11), 2202.
63 Azzaroni O, Trappmann B, Van Rijn P, et al. Angewandte Chemie International Edition, 2006, 45(44), 7440.
64 Park D H, Hong J, Park I S, et al. Advanced Functional Materials, 2014, 24(33), 5186.
65 Davis D A, Hamilton A, Yang J, et al. Nature, 2009, 459(7243), 68.
66 Lee C K, Davis D A, White S R, et al. Journal of the American Chemical Society, 2010, 132(45), 16107.
67 Song Y K, Lee K H, Kim D M, et al. Sensors and Actuators B:Chemical, 2016, 222, 1159.
68 Postiglione G, Colombo A, Dragonetti C, et al. Sensors and Actuators B:Chemical, 2017, 248, 35.
69 Di Credico B, Griffini G, Levi M, et al. ACS Applied Materials & Interfaces, 2013, 5(14), 6628.
70 Li W, Matthews C C, Yang K, et al. Advanced Materials, 2016, 28(11), 2189.
71 Vidinejevs S, Strekalova O, Aniskevich A, et al. Mechanics of Composite Materials, 2013, 49(1), 77.
72 Odom S A, Jackson A C, Prokup A M, et al. ACS Applied Materials & Interfaces, 2011, 3(12), 4547.
73 Chen Y, Li W, Luo J, et al. ACS Applied Materials & Interfaces, 2021, 13(12), 14518.
74 Bond I P, Pang J W C. Composites Part A:Applied Science and Manufacturing, 2005, 36(2), 183.
75 Pang J W C, Bond I P. Composites Science and Technology, 2005, 65(11), 1791.
76 Lu X, Li W, Sottos N R, et al. ACS Applied Materials & Interfaces, 2018, 10(47), 40361.
77 Liu C, Wu H, Qiang Y, et al. Corrosion Science, 2021, 184, 109355.
78 Hu M, Peil S, Xing Y, et al. Materials Horizons, 2018, 5(1), 51.
79 Zhang H, Zhang X, Bao C, et al. Chemistry of Materials, 2019, 31(7), 2611.
80 Chen S, Han T, Zhao Y, et al. ACS Applied Materials & Interfaces, 2020, 12(4), 4870.
81 Salaluk S, Auepattana-Aumrung K, Thongchaivetcharat K, et al. Advanced Materials Interfaces, 2020, 7(20), 2001073.
82 Song Y K, Lee T H, Lee K C, et al. Applied Surface Science, 2020, 511, 145556.
83 Song Y K, Kim B, Lee T H, et al. Macromolecular Rapid Communications, 2017, 38(6), 1600657.
84 Wang J P, Wang J K, Zhou Q, et al. Macromolecular Materials and Engineering, 2018, 303(4), 1700616.
85 Pang J W C, Bond I P. Composites Part A:Applied Science and Manufacturing, 2005, 36(2), 183.
86 Kling S, Czigány T. Composites Science and Technology, 2014, 99, 82.
87 Liu C, Jin Z, Cheng L, et al. Nanoscale, 2020, 12(5), 3194.
88 Thongchaivetcharat K, Salaluk S, Crespy D, et al. ACS Applied Materials & Interfaces, 2020, 12(37), 42129.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[3] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[4] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[5] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[6] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[7] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[8] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[9] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[10] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[11] 史国强, 薛冬峰. 电负性评估稀土离子电荷转移跃迁理论及在量子调控发光中的应用[J]. 材料导报, 2023, 37(3): 22110122-5.
[12] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[13] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[14] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed