Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030238-8    https://doi.org/10.11896/cldb.22030238
  高分子与聚合物基复合材料 |
基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究
周鑫1,2, 关水1,2,3,*, 孙长凯3,*
1 大连理工大学化工学院,精细化工国家重点实验室,辽宁 大连 116024
2 大连理工大学大连市干细胞与组织工程研发中心,辽宁 大连 116024
3 大连理工大学生物医学工程学院,精准转化医学控制工程研究与教育中心(R-ECCE-TPM),辽宁 大连 116024
Preparation and Properties of Conductive Hydrogel Scaffolds Based on Chitosan/Xanthan Gum Interpenetrating Networks
ZHOU Xin1,2, GUAN Shui1,2,3,*, SUN Changkai3,*
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Dalian R & D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
3 Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 16835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电支架应用于神经组织工程,有利于细胞增殖生长,但支架内部的导电聚合物通常会带来细胞毒性以及疏水基团引起的细胞粘附问题。本研究通过黄原胶(XG)与壳聚糖(CS)相结合,引入透明质酸掺杂的聚3,4-乙撑二氧噻吩(PEDOT-HA)导电纳米颗粒,成功制备了一种生物相容性良好的新型PEDOT-HA/CS/XG互穿网络导电水凝胶支架。实验采用葡萄糖酸内酯(GDL)溶解CS,实现CS与XG的结合,通过优化GDL含量缩短成胶时间。引入PEDOT-HA导电纳米颗粒赋予支架材料导电性,测定PEDOT-HA含量对支架材料孔隙率、电导率、吸水率的影响,考察支架的降解性、流变性、热稳定性与力学性能。结果显示,PEDOT-HA的引入提高了水凝胶的孔隙率、电导率、弹性和机械强度,PEDOT-HA/CS/XG导电水凝胶支架吸水率为2 575%~3 866%,同时具有适宜的降解性与热稳定性。细胞粘附率检测及扫描电镜(SEM)观察结果表明,PEDOT-HA的引入有利于PC12细胞的粘附生长,并形成交错网状结构。细胞活力检测与荧光染色结果显示,PC12细胞在导电水凝胶支架上保持了良好的增殖活性,培养5 d后,10%PEDOT-HA/CS/XG支架上的细胞活力最高可达到对照组的120.42%,证明PEDOT-HA/CS/XG导电水凝胶支架具有良好的生物相容性,展现出应用于神经组织工程的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周鑫
关水
孙长凯
关键词:  导电水凝胶支架  聚3,4-乙撑二氧噻吩  黄原胶  壳聚糖  组织工程    
Abstract: Conductive scaffolds are used in neural tissue engineering, which is beneficial to cell proliferation and growth, but the conductive polymers inside the scaffolds usually bring cytotoxicity and cell adhesion problems caused by hydrophobic groups. In this study, a novel PEDOT-HA/CS/XG interpenetrating network conductive hydrogel scaffold was successfully prepared by combining xanthan gum (XG) with chitosan (CS) and introducing hyaluronic acid-doped poly-3,4-ethylene dioxythiophene (PEDOT-HA) conductive nanoparticles. In the experiment, gluconolactone (GDL) was used to dissolve CS to realize the combination of CS and XG, and the gelation time was shortened by optimizing the content of GDL. The introduction of PEDOT-HA conductive nanoparticles gave the scaffold material conductivity, and the effect of PEDOT-HA content on the porosity, electrical conductivity and water absorption of the scaffold material was determined, besides the degradability, rheology, thermal stability and mechanical properties of the scaffold were investigated. The results showed that the introduction of PEDOT-HA improved the porosity, electrical conductivity, elasticity and mechanical strength of the hydrogel, and the water absorption rate of the PEDOT-HA/CS/XG conductive hydrogel scaffold was between 2 575%—3 949%, and it has suitable degradation rate and thermal stability. Cell adhesion rate detection and scanning electron microscope (SEM) observation results showed that the introduction of PEDOT-HA was beneficial to the adhesion and growth of PC12 cells and formed a staggered network structure. The results of cell viability detection and fluorescence staining showed that PC12 cells maintained a good proliferation activity on the conductive hydrogel scaffold. After 5 d of culture, the cell viability on the 10% PEDOT-HA/CS/XG scaffold could reach the highest level of 120.42% in the control group, which proves that the PEDOT-HA/CS/XG conductive hydrogel scaffold has good biocompatibility and demonstrates potential for application in neural tissue engineering.
Key words:  conductive hydrogels scaffolds    poly 3,4-ethylene dioxythiophene    xanthan gum    chitosan    tissue engineering
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  Q819  
基金资助: 国家重点基础研究发展计划(2018AAA0100300);中央高校基本科研基金(DUT21YG107)
通讯作者:  *关水, 2006年获大连理工大学环境与生命学院生物化工专业工学博士学位。大连理工大学化学工程学院副教授、硕士研究生导师。主要从事干细胞与组织工程、精准转化医学智能材料、神经系统疾病药物筛选及毒性评价、微生态大脑保护与修复等方面的研究工作。发表英文SCI/EI论文60余篇,包括Carbohyd Polym、J Mater Chem B、Biomater Sci、Mat Sci Eng C-Mater、Int J Biol Macromol、Food Chem Toxicol、Toxicol in Vitro等。参与撰写Elsevier公司出版Comprehensive Biotechnology (Second Edition)(2011)。授权国家发明专利12项。guanshui@dlut.edu.cn
孙长凯,1997年毕业于第四军医大学,获博士学位。大连理工大学生物医学工程学院二级教授、精准转化医学控制工程研究中心主任、博士研究生导师、省市优秀专家、特聘教授,国家重点研发计划、国家科技重大专项课题负责人,享受国务院津贴。长期从事大脑保护与修复临床及基础(基础医学、生物学与工程技术科学)双向转化研究(脑血管疾病、难治性癫癎、糖尿病脑病等重大大脑疾病复杂网络组合靶点机制、组合干预防治策略和方法转化工程系统构建)。在Lancet、Biomaterials、Chemistry、AJNR、EBioMe-dicine、Nucleic Acids Research等中外重要学术期刊发表论文200余篇。授权国家发明专利22项。2020年5月获第二届全国创新争先奖状称号。sunck2@dlut.edu.cn   
作者简介:  周鑫,2018年6月于中国石油大学(北京)获得工学学士学位。现为大连理工大学化学工程学院硕士研究生,在关水副教授的指导下进行研究。目前主要研究领域为导电水凝胶制备、干细胞与组织工程。
引用本文:    
周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
ZHOU Xin, GUAN Shui, SUN Changkai. Preparation and Properties of Conductive Hydrogel Scaffolds Based on Chitosan/Xanthan Gum Interpenetrating Networks. Materials Reports, 2023, 37(18): 22030238-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030238  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030238
1 Mchugh D, Gil J. Journal of Cell Biology, 2018, 217(1), 65.
2 Niri A D, Zarchi A A K, Harati P G, et al. Artificial Organs, 2019, 43(10), 947.
3 Dong Z, Pei Z, Li Z, et al. Neuroscience Letters, 2017, 651, 109.
4 Meng X T, Du Y S, Dong Z Y, et al. Journal of Neural Engineering, 2020, 17(5), 056048.
5 Zhang Q S, Yan Y H, Li S P, et al. Biomedical Materials, 2009, 4(3), 035008.
6 Ng J Y, Obuobi S, Chua M L, et al. Carbohydrate Polymers, 2020, 241, 116345.
7 Byram P K, Sunka K C, Barik A, et al. International Journal of Biological Macromolecules, 2020, 165, 874.
8 Le Y G. 3D Bioprinting chondroconductive scaffolds based on photo-crosslinkable xanthan for customized cartilage tissue engineering. Ph.D. Thesis, Guangxi Medical University, China, 2019 (in Chinese).
勒义官. 可紫外光交联的黄原胶墨水3D生物打印用于软骨组织工程研究. 博士学位论文, 广西医科大学, 2019.
9 Kurita K. Marine Biotechnology, 2006, 8(3), 203.
10 Chang S, Lin H T V, Wu G J, et al. Carbohydrate Polymers, 2015, 134, 74.
11 Jiang T, Deng M, James R, et al. Acta Biomaterialia, 2014, 10(4), 1632.
12 Westin C B, Trinca R B, Zuliani C, et al. Materials Science & Enginee-ring C, 2017, 80, 594.
13 Rao K M, Kumar A, Han S S. Journal of Materials Science & Technology, 2018, 34(8), 1371.
14 Hu Y, Ma S S, Yang Z H, et al. Colloids and Surfaces B-Biointerfaces, 2016, 140, 382.
15 Akay S, Heils R, Trieu H K, et al. Carbohydrate Polymers, 2017, 161, 228.
16 Lv X J, Liu Y E, Song S B, et al. Carbohydrate Polymers, 2019, 205, 312.
17 Zha F W, Chen W, Lv G W, et al. Materials Science & Engineering C, 2021, 120, 111795.
18 Xiao Y H, Li C M, Yu S C, et al. Talanta, 2007, 72(2), 532.
19 Abedi A, Hasanzadeh M, Tayebi L. Materials Chemistry and Physics, 2019, 237, 121882.
20 Yang B G, Yao F L, Ye L, et al. Biomaterials Science, 2020, 8(11), 3173.
21 Xu C, Guan S, Wang S P, et al. Materials Science & Engineering C, 2018, 84, 32.
22 Asplund M, Thaning E, Lundberg J, et al. Biomedical Materials, 2009, 4(4), 45009.
23 Wang S P, Guan S, Wang J, et al. Journal of Bioscience and Bioenginee-ring, 2017, 123(1), 116.
24 Mantione D, Del A I, Schaafsma W, et al. Macromolecular Bioscience, 2016, 16(8), 1227.
25 Ozgenel G Y. Microsurgery, 2003, 23(6), 575.
26 Wang S P. The preparation of three-dimensional conductive scaffolds and their effect on the proliferation and differentiation of neural stem cells in vitro. Ph.D. Thesis, Dalian University of Technology, China, 2018 (in Chinese).
王树萍. 三维导电支架的制备及其对神经干细胞体外增殖与分化的影响. 博士学位论文, 大连理工大学, 2018.
27 Han Y, Zeng Q Y, Li H Y, et al. Acta Biomaterialia, 2013, 9(11), 9107.
28 Hu X Y, Man Y, Li W F, et al. Polymers, 2019, 11(10), 1601.
29 Wang S P, Guan S, Zhu Z B, et al. Materials Science & Engineering C, 2017, 71, 308.
30 Xu J, Hu X Y, Jiang S Y, et al. Polymers, 2019, 11(2), 230.
31 Santini M T, Rainaldi G, Indovina P L. International Journal of Radiation Biology, 2009, 85(4), 294.
32 Liu X F, Miller A L, Park S, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 14677.
33 Zhu Z B, Guan S, Wang S P, et al. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5), 1143 (in Chinese).
朱智博, 关水, 王树萍, 等. 高校化学工程学报, 2017, 31(5), 1143.
34 Wang S P, Guan S, Xu C, et al. Journal of Chemical Engineering of Chinese Universities, 2014, 28(3), 592 (in Chinese).
王树萍, 关水, 徐超, 等. 高校化学工程学报, 2014, 28(3), 592.
35 Wu H, Zhang J, Luo Y, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 192.
36 Bresolin T M B, Milas M, Rinaudo M, et al. International Journal of Biological Macromolecules, 1998, 23(4), 263.
37 Zhou S H. Conformation transition of xanthan in aqueous solution and its rheological research. Master's Thesis, Shanghai Jiao Tong University, China, 2008 (in Chinese).
周盛华. 黄原胶在水溶液中的构象转变及其流变学研究. 硕士学位论文, 上海交通大学, 2008.
38 Falland C L, Scholze M, Hammer N, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 609.
39 Zhang R R. Research on the viscoelastic mechanical behavior of brain tissue. Master's Thesis, Dalian University of Technology, China, 2017 (in Chinese).
张润润. 脑组织粘弹性力学行为研究. 硕士学位论文, 大连理工大学, 2017.
40 Tang S M D, White J D, Tien L W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(38), 13811.
41 Vanwachem P B, Beugeling T, Feijen J, et al. Biomaterials, 1985, 6(6), 403.
[1] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[2] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[3] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[4] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[5] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[6] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[7] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[8] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[9] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[10] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[11] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[12] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[13] 冯颖, 李齐雪, 邵娟, 张建伟, 董鑫, 张庆瑾. 基于壳聚糖的分子印迹技术研究及应用[J]. 材料导报, 2022, 36(17): 21040121-8.
[14] 薛丽媛, 黄锋林, 徐文晴. 负载球状Zn/Al-LDH的壳聚糖海绵的制备及微纤维去除性能研究[J]. 材料导报, 2021, 35(z2): 554-557.
[15] 刘珊, 廖磊, 蒋翠婷, 李炫妮, 曹磊, 赵春朋. 铝污泥负载水合氧化铁-壳聚糖吸附水中Ni(Ⅱ)的研究[J]. 材料导报, 2021, 35(Z1): 530-535.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed