Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21090198-9    https://doi.org/10.11896/cldb.21090198
  高分子与聚合物基复合材料 |
导电聚合物基抗菌复合材料的合成及生物医用研究进展
黄怡萱1,2, 于鹏1,2, 周正难1,2,*, 王珍高1,2,*, 宁成云1,2
1 华南理工大学材料科学与工程学院,广州 510640
2 国家人体组织功能重建工程技术研究中心,广州 510006
Preparations and Biomedical Applications of Conductive Polymers-based Antibacterial Composites:a Review
HUANG Yixuan1,2, YU Peng1,2, ZHOU Zhengnan1,2,*, WANG Zhengao1,2,*, NING Chengyun1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 4205KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚吡咯、聚噻吩和聚苯胺为代表的导电聚合物具有优异的导电特性和良好的生物相容性,在生物医学工程、临床医学等领域中有着广泛的应用。由导电聚合物与抗菌剂复合而成的导电聚合物基抗菌复合材料,有助于改善导电聚合物的抗菌性能,降低细菌感染的风险,避免导电聚合物优异的电学性质被细菌生物膜掩盖。本文总结了导电聚合物基抗菌复合材料的研究进展,重点介绍了这类复合材料的抗菌机制、合成策略以及在生物医学工程中的应用现状,最后展望了导电聚合物基抗菌复合材料的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄怡萱
于鹏
周正难
王珍高
宁成云
关键词:  导电聚合物  抗菌  组织工程  生物医用    
Abstract: The conductive polymers, such as polypyrrole, polythiophene and polyaniline, have excellent conductive properties and biocompatibility, which have been widely applied in biomedical engineering, clinical medicine and other fields. To improve the antibacterial properties of conductive polymers, researchers always combine conductive polymers with antibacterial agents. This strategy helps to reduce the risk of bacterial infection, and keep the excellent properties of conductive polymers from being covered by bacterial biofilm. In this review, we first summarized the antibacterial mechanisms and synthesis strategies of conductive polymers-based antibacterial composites. Then, we introduced their applications in biomedical engineering. Furthermore, we prospected the development of conductive polymers-based antibacterial composites.
Key words:  conductive polymers    antibacterial    tissue engineering    biomedical applications
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB33  
基金资助: 国家自然科学基金(52101285);中国博士后科学基金(2021M691064)
通讯作者:  *王珍高,华南理工大学材料科学与工程学院博士后。2014年6月本科毕业于湖北大学材料科学与工程学院,2020年12月在华南理工大学材料学专业取得博士学位,2021年至今在华南理工大学从事博士后研究工作。主要从事导电高分子材料及其生物医学应用方面的研究工作。发表论文14篇,包括Nano Letters、Bioactive Materials、Advanced Functional Materials和ACS nano等,获中国发明专利授权7项,申请美国专利2项。zn0810411329@scut.edu.cn
周正难,华南理工大学材料科学与工程学院博士后。2012年7月本科毕业于湖北工业大学化学与环境学院,2017年7月在华南理工大学生物医学工程专业取得博士学位,2017年至今分别在广东工业大学和华南理工大学进行博士后研究工作。主要从事电活性高分子材料及其生物医学应用的研究工作。主持国家自然科学基金青年基金1项,博士后科学基金面上项目2项,参与国家自然科学基金重点项目,国家自然科学基金面上项目,国家重点基础研究发展计划(973计划)项目等。在SCI收录的国际刊物上发表论文23篇,包括Progress in Polymer Science、Progress in Mate-rials Science、Angewandte Chemie-International Edition、ACS Nano等。wangzhengaohubei@gmail.com   
作者简介:  黄怡萱,2020年7月毕业于华南理工大学,获得工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,在宁成云教授的指导下进行研究。目前主要研究领域为电活性生物医用材料。
引用本文:    
黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
HUANG Yixuan, YU Peng, ZHOU Zhengnan, WANG Zhengao, NING Chengyun. Preparations and Biomedical Applications of Conductive Polymers-based Antibacterial Composites:a Review. Materials Reports, 2023, 37(9): 21090198-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090198  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21090198
1 Le T H, Kim Y, Yoon H. Polymers, 2017, 9, 150.
2 Fincher C, Chen C E, Heeger A J. Physical Review Letters, 1982, 48, 100.
3 Shi G, Zhang Z, Rouabhia M. Biomaterials, 2008, 29, 3792.
4 Balint R, Cassidy N J, Cartmell S H. Acta Biomaterialia, 2014, 10, 2341.
5 Guo B, Ma P X. Biomacromolecules, 2018, 19, 1764.
6 Ning C, Zhou Z, Tan G, et al. Progress in Polymer Science, 2018, 81, 144.
7 da Silva F A G, de Araújo C M S, Alcaraz-Espinoza J J, et al. Journal of Polymer Science Part B:Polymer Physics, 2018, 56, 1063.
8 Smith R E, Totti S, Velliou E, et al. Sensors and Actuators B:Chemical, 2019, 287, 338.
9 Qu J, Zhao X, Ma P X, et al. Acta Biomaterialia, 2018, 72, 55.
10 Harris L G, Richards R G. Injury, 2006, 37, 3.
11 Seshadri D T, Bhat N V. Sen'i Gakkaishi, 2005, 61, 103.
12 Au K M, Lu Z, Matcher S J, et al. Advanced Materials, 2011, 23, 5792.
13 Zhou W, Lu L, Chen D, et al. Journal of Materials Chemistry B, 2018, 6, 3128.
14 Dhivya C, Vandarkuzhali S A A, Radha N. Arabian Journal of Chemistry, 2019, 12, 3785.
15 Boomi P, Prabu H G. Colloids and Surfaces A, 2013, 429, 51.
16 Mei L, Zhang X, Wang Y, et al. Polymer Chemistry, 2014, 5, 3038.
17 Ge L, Li Q, Wang M, et al. International Journal of Nanomedicine, 2014, 9, 2399.
18 Simchi A, Tamjid E, Pishbin F, et al. Nanomedicine, 2011, 7, 22.
19 Rai M, Yadav A, Gade A. Biotechnology Advances, 2009, 27, 76.
20 Cady N C, Behnke J L, Strickland A D. Advanced Functional Materials, 2011, 21, 2506.
21 Zhang X, Yang C, Yang K. ACS Applied Materials & Interfaces, 2020, 12, 361.
22 Makvandi P, Gu J T, Zare E N, et al. Acta Biomaterialia, 2020, 101, 69.
23 Ateh D D, Navsaria H A, Vadgama P. Journal of the Royal Society Interface, 2006, 3, 741.
24 Sirivisoot S, Pareta R A, Webster T J. Journal of Biomedical Materials Research A, 2011, 99, 586.
25 Sirivisoot S, Pareta R, Webster T J. Nanotechnology, 2011, 22, 085101.
26 Ungureanu C, Popescu S, Purcel G, et al. Materials Science & Engineering C-Materials for Biological Applications, 2014, 42, 726.
27 Dutta P K, Tripathi S, Mehrotra G K, et al. Food Chemistry, 2009, 114, 1173.
28 Wu T, Pan Y, Bao H, et al. Materials Chemistry and Physics, 2011, 129, 932.
29 Zhang J, Neoh K G, Hu X, et al. Biomaterials, 2014, 35, 7690.
30 Khan S, Narula A K. European Polymer Journal, 2016, 81, 161.
31 Kuralay F, Demirci S, Kiristi M, et al. Colloids and Surfaces B:Biointerfaces, 2014, 123, 825.
32 Talebi A, Labbaf S, Karimzadeh F. Polymer Testing, 2019, 75, 254.
33 Zhao X, Li P, Guo B, et al. Acta Biomaterialia, 2015, 26, 236.
34 Yu J, Horsley J R, Abell A D. Accounts of Chemical Research, 2018, 51, 2237.
35 Xing J, Qi S, Wang Z, et al. Advanced Functional Materials, 2019, 29, 1806353.
36 Jotiram K P, Prasad R G S V, Jakka V S. Nano Biomedicine and Engineering, 2012, 4, 144.
37 Qu J, Zhao X, Liang Y, et al. Chemical Engineering Journal, 2019, 362, 548.
38 Han J, Wang M, Hu Y, et al. Progress in Polymer Science, 2017, 70, 52.
39 Guo C X, Zheng X T, Ng S R, et al. Chemical Communications, 2011, 47, 2652.
40 Parthiban E, Kalaivasan N, Sudarsan S. Arabian Journal of Chemistry, 2020, 13, 4751.
41 Bogdanovic U, Vodnik V, Mitric M, et al. ACS Applied Materials & Interfaces, 2015, 7, 1955.
42 Ting Y P, Neoh K G, Kang E T, et al. Journal of Chemical Technology and Biotechnology, 1994, 59, 31.
43 Ismayil K M M, Varghese A, Antony R. Journal of Elastomers & Plastics, 2019, 52, 103.
44 Zengin H, Aksin G, Zengin G, et al. Polymer Engineering & Science, 2019, 59, E182.
45 Ahmad N, Sultana S, Kumar G, et al. Journal of Environmental Chemical Engineering, 2019, 7, 102804.
46 Mirmohseni A, Rastgar M, Olad A. Journal of Applied Polymer Science, 2020, 137, 48825.
47 Carlson C, Hussain S M, Schrand A M, et al. Journal of Physical Che-mistry B, 2008, 112, 13608.
48 Xu J, Hu J, Quan B, et al. Macromolecular Rapid Communications, 2009, 30, 936.
49 Liu K, Nasrallah J, Chen L, et al. Carbohydrate Polymers, 2018, 194, 97.
50 Chaloupka K, Malam Y, Seifalian A M. Trends in Biotechnology, 2010, 28, 580.
51 Reidy B, Haase A, Luch A, et al. Materials, 2013, 6, 2295.
52 Ercan B, Webster T J. International Journal of Nanomedicine, 2008, 3, 477.
53 Ercan B, Webster T J. Biomaterials, 2010, 31, 3684.
54 Meng S, Zhang Z, Rouabhia M. Journal of Bone and Mineral Metabolism, 2011, 29, 535.
55 Ignatova M, Labaye D, Lenoir S, et al. Langmuir, 2003, 19, 8971.
56 Zhu B, Li Y, Huang F, et al. Biomaterials Science, 2019, 7, 4730.
57 Guo Y, Jia S, Qiao L, et al. Colloids and Surfaces B:Biointerfaces, 2020, 194, 111186.
58 Rikhari B, Pugal Mani S, Rajendran N. Carbohydrate Polymers, 2018, 189, 126.
59 Yu Y, Tao B, Sun J, et al. Materials Letters, 2020, 268, 127420.
60 Ong J L, Chan D C. Critical Reviews in Biomedical Engineering, 2000, 28, 667.
61 Madhan K A, Adesina A Y, Hussein M A, et al. Materials Science & Engineering C-Materials for Biological Applications, 2019, 98, 482.
62 Subramani R, Elangomannan S, Louis K, et al. ACS Applied Materials & Interfaces, 2016, 8, 12404.
63 Haraguchi Y, Shimizu T, Yamato M, et al. Biomaterials, 2006, 27, 4765.
64 Jasenska D, Kasparkova V, Radaszkiewicz K A, et al. Carbohydrate Polymers, 2021, 253, 117244.
65 Chakraborty P, Oved H, Bychenko D, et al. Advanced Materials, 2021, 33, e2008715.
66 Dong R, Zhao X, Guo B, et al. ACS Applied Materials & Interfaces, 2016, 8, 17138.
67 Talikowska M, Fu X, Lisak G. Biosensors and Bioelectronics, 2019, 135, 50.
68 Mohana S P, Rangharajan K K, Akbari E, et al. Lab on a Chip, 2021, 21, 319.
69 Zhao X, Wu H, Guo B, et al. Biomaterials, 2017, 122, 34.
70 Zhao Y, Li Z, Song S, et al. Advanced Functional Materials, 2019, 29, 1901474.
71 Feng L, Shi W, Chen Q, et al. Advanced Healthcare Materials, 2021, 10, e2100784.
72 Zhang Q, Qiao Y, Zhu J, et al. Composites Part B:Engineering, 2021, 223, 109140.
73 Zhang N, Yue L, Xie Y, et al. IEEE Journal of Translational Enginee-ring in Health and Medicine, 2018, 6, 2700310.
74 Zhang K, Kang N, Zhang B, et al. Advanced Electronic Materials, 2020, 6, 2000259.
75 Boomi P, Poorani G P, Palanisamy S, et al. Journal of Cluster Science, 2019, 30, 715.
76 Ahmad N, Sultana S, Faisal S M, et al. RSC Advances, 2019, 9, 41135.
77 Hosseini H, Zirakjou A, Goodarzi V, et al. International Journal of Biological Macromolecules, 2020, 152, 57.
78 He J, Liang Y, Shi M, et al. Chemical Engineering Journal, 2020, 385, 123464.
[1] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[2] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[3] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[4] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[5] 靳宇, 曲溪, 文陈, 舒文祥, 赵阔, 徐俊杰, 白晶莹, 崔庆新, 张立功. 空间微生物防护材料研究进展[J]. 材料导报, 2022, 36(22): 22050282-9.
[6] 胡艳丽, 白宇含, 张毅, 张昊, 朱若英, 卢雪. 反应型阳离子抗菌剂的合成及其对毛织物的长效抗菌整理[J]. 材料导报, 2022, 36(17): 21050278-8.
[7] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[8] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[9] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[10] 樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
[11] 姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
[12] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[13] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[14] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[15] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed