Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050282-9    https://doi.org/10.11896/cldb.22050282
  宇航材料 |
空间微生物防护材料研究进展
靳宇1,†, 曲溪2,†, 文陈1,*, 舒文祥1, 赵阔1, 徐俊杰1, 白晶莹1, 崔庆新1, 张立功1
1 中国空间技术研究院,北京卫星制造厂有限公司,北京 100094
2 中国空间技术研究院,北京空间飞行器总体设计部,北京 100094
Research Process of Space Microbial Protection Materials
JIN Yu1,†, QU Xi2,†, WEN Chen1,*, SHU Wenxiang1, ZHAO Kuo1, XU Junjie1, BAI Jingying1, CUI Qingxin1, ZHANG Ligong1
1 Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094, China
2 Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 8101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 载人空间站为航天员长期驻留创造了良好环境,同样也为微生物的滋生提供了有利条件。致病微生物会导致航天员生病,真菌和霉菌会腐蚀和降解空间站的各种材料,导致空间站设备故障,出现平台失效和密封性下降等风险。本文对空间站微生物腐蚀现状进行分析,并介绍了目前空间站常用材料的微生物防护现状。从金属粒子、纳米半导体金属氧化物、有机聚合物、疏水涂层以及复合抗菌材料五个方向详细阐述了国内外有关空间微生物防护材料的研究进展。同时结合空间航天器运行特点,对未来空间微生物防护材料的研究方向进行分析及展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳宇
曲溪
文陈
舒文祥
赵阔
徐俊杰
白晶莹
崔庆新
张立功
关键词:  空间站  微生物防护  抗菌材料    
Abstract: The friendly environment of space station created for astronauts to stay for a long time also provides favorable conditions for the breeding of microorganisms. Pathogenic macrobiotics can cause astronauts to get sick. Fungi and molds can corrode and degrade various materials of the space station, leading to the failure of equipment and platform. The tightness of the space station also can be influenced. In this paper, the current situation of microbial corrosion in space station is analyzed, and the current situation of corrosion prevention of materials commonly used in space station is introduced. Afterwards, the domestic and international research progresses of space microbial protection materials are summarized from five aspects, metal particles, nano semiconductor metal oxides, organic polymers, hydrophobic coating and composite antibacterial materials. On the basis, combined with the operation characteristics of spacecraft, the future research direction of space microbial protection materials is analyzed and prospected.
Key words:  space station    microbial protection    antibacterial material
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TG174.4  
通讯作者:  * 13552907280@163.com   
作者简介:  † 共同第一作者
靳宇,北京卫星制造厂有限公司高级工程师。2017年北京航空航天大学材料学专业博士毕业。目前主要从事航天器表面处理、功能涂层等方面的研究工作。发表论文20余篇,申请受理/授权专利近10项。
曲溪,北京飞行器总体设计部高级工程师。2006年哈尔滨工业大学飞行器设计专业硕士毕业。目前主要从事载人航天器环境控制总体设计,空间微生物防控总体技术研究。主持载人航天领域预先研究项目4项。发表论文20余篇,申请受理/授权专利近10项。
文陈,北京卫星制造厂有限公司热表中心研发市场室主任、高级工程师,中国表面工程学会行业专家,中国国际咨询公司高级专家(材料及新能源领域)。2015年北京航空航天大学材料学专业博士毕业。目前主要从事航天器表面处理、功能涂层等方面的研究工作。发表论文30余篇,申请受理/授权专利近20项。
引用本文:    
靳宇, 曲溪, 文陈, 舒文祥, 赵阔, 徐俊杰, 白晶莹, 崔庆新, 张立功. 空间微生物防护材料研究进展[J]. 材料导报, 2022, 36(22): 22050282-9.
JIN Yu, QU Xi, WEN Chen, SHU Wenxiang, ZHAO Kuo, XU Junjie, BAI Jingying, CUI Qingxin, ZHANG Ligong. Research Process of Space Microbial Protection Materials. Materials Reports, 2022, 36(22): 22050282-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050282  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050282
1 Yang H, Hou Y Q, Zhang L T. Manned Spacecraft, 2013, 19(2), 38(in Chinese).
杨宏,侯永青,张兰涛. 载人航天, 2013, 19(2), 38.
2 Novikova N D. In: Presented at the 34th COSPAR Scientific Assembly. Housyon, 2002, pp.1790.
3 Novikova N D, Poddubko S, Deshevaya E, et al. Research in Microbio-logy, 2006, 157, 5.
4 Novikova N D, Svistunova Y, Deshevaya E, et al. In: Presented at the International Astronautical Federation - 58th International Astronautical Congress. Hyderabad, 2007, pp.185.
5 Novikova N D. Microbial Ecology, 2004, 47, 127.
6 Maximilian M, Alexandra P, Tatiana A A, et al. Microbiome,2016,4,65.
7 Balistreri S F S. In: Presented at the International Conference on Environmental Systems. United States, 2013.
8 Pierson D L, Ott C M, Cruz P, et al. NASA Internal, 20090014893, 2009.
9 Kemp H T. NASA, 30504, 1970.
10 Ulrich R, Andreas H, Lutz P, et al. Gravitational and Space Research, 2014, 2(2), 46.
11 Alekhova T A, Aleksandrova A A, Tiu N, et al. Applied Biochemistry and Microbiology, 2005, 41(4), 382.
12 Alekhova T A, Zagustina N A, Aleksandrova A V, et al.Journal of Surface Investigation X-ray, 2007, 1(4),411.
13 Alekhova T A, Aleksandrova A V, Novozhilova T Y, et al.Moscow University Biological Sciences Bulletin, 2008, 63(4),163.
14 Novikova N D, Poddubko S V , Deshevaya E A, et al. In: 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Bremen, 2003, pp.IAC-03-G.P.13.
15 Michele N B, LaShelle E M, Michael S R, et al. In: 41st International Conference on Environmental Systems 2011. Portland, 2011, pp.KSC-2011-153.
16 Guridi A, Diederich A K, Aguila-Arcos S, et al. Materials Science and Engineering C, 2015, 50,1.
17 Clauss-Lendzian E, Vaishampayan A, de Jong A, et al. Microbiological Research, 2017, 207, 53.
18 Anonymous, Antimicrobial Agent Protects NASA Crew's Clothing and Linens. NASA Tech Briefs, 2004, 28, 11.
19 Balagna C, Perero S, Ferraris S, et al. Materials Chemistry Physics, 2012, 135, 714.
20 Balagna C, Irfan M, Perero S, et al. Surface and Coatings Technology, 2017, 321, 438.
21 Hahn C. Contact killing of Escherichia coli K12 and Staphylococcus cohnii on copper containing and alloyed materials, Hochschulschrift, University Regensburg, Germany, 2016.
22 Hahn C, Hans M, Hein C, et al. BioMetals, 2018, 31,759.
23 Hahn C, Hans M, Hein C, et al. Astrobiology, 2017, 17,1183.
24 Zhang C, Li Y, Shuai D M, et al. Chemical Engineering Journal, 2019, 355,399.
25 Veerachandra K Y, Glenn D F, Hung Y C. Journal of Food Science, 2015, 80(8),1903.
26 Susan P K, Raphaël B, Rukmini G. Scientific Reports, 2019, 9,1883.
27 Morford M A, Birmele M, Roberts M S. In: 42nd International Confere-nce on Environmental Systems 2012. United States, 2012, pp.3507.
28 Xiao J S, Zi X H, Ma C F. Journal of Beijing University of Technology, 2004, 30(1), 41(in Chinese).
肖劲松, 訾学红, 马重芳.北京工业大学学报, 2004, 30(1), 41.
29 Zhen H W, Xu X L, Li G, et al.Journal of Deep Space Exploration, 2019, 6(1), 37(in Chinese).
甄贺伟,徐晓玲,李果,等.深空探测学报, 2019, 6(1), 37.
30 Yuan X. Surface Microicro-treatment and antibacterial functionalization of Aluminum alloy. Master's Thesis, Southwest Jiaotong University, China, 2018(in Chinese).
袁新. 铝合金表面微处理与抗菌功能化研究. 硕士学位论文, 西南交通大学, 2018.
31 Zhang J J, Li Y, Liu B T, et al. Spacecraft Environment Engineering,2018, 35(5),437(in Chinese).
张静静, 李 毅, 刘泊天, 等. 航天器环境工程, 2018, 35(5), 437.
32 Monica F, Sergio P, Marta M, et al. Materials Chemistry & Physics, 2010, 120(1),123.
33 Tetsuya T, Yuji A, Wakako K, et al. Journal of Wood Science, 2011, 57(4),308.
34 Andrew M P M, Derek B, Aijun W, et al.Advanced Functional Mate-rials, 2005, 15(2),336.
35 Li J, Xu J W, Fan L H, et al. In: Electronic components and technology conference, Las Vegas, 2004, pp.943.
36 Callel C I, Chen A, Immer C C, et al. In: AIAA SPACE Conference and Exposition. Anaheim, 2010, pp.KSC-2010-183.
37 Danielle V M,Wanda C P,haron A S,et al.In:Optical System Contamination: Effects,Measurements and Control.San Diego,2010,pp.779401.
38 Taylor E W, Pirich R G. NASA Tech Briefs, 2012, 35(5), 41.
39 Philip S B, Bharat B. Scientific Reports, 2016, 1,1038.
40 Cumont A, Zhang R Y, Corscadden L, et al. Materials and Design, 2020, 189, 108498.
41 Zhang C, Li Y, Shuai D M, et al. Chemical Engineering Journal, 2019, 355, 399.
42 Yin L S, Shen H. Materials Reports, 2000, 14(12), 23(in Chinese).
尹荔松, 沈辉. 材料导报, 2000, 14(12), 23.
43 Wen H. Metallic Functional Materials, 2001, 8(2),11(in Chinese).
温汉. 金属功能材料, 2001, 8(2),11.
44 Zhuang J D, Zeng W L, Liu P, et al.Materials for Mechanical Enginee-ring, 2012, 36(9),85(in Chinese).
庄建东, 曾文琳,刘平,等.机械工程材料, 2012, 36(9),85.
45 Sametband M, Kalt I, Gedanken A, et al.ACS Applied Material Interfaces, 2014, 6, 1228.
46 Akhavan O,Choobtashani M,Ghaderi E.Journal of Physical Chemistry C, 2012, 116, 9653.
[1] 姚希燕, 唐晓宁, 王晓楠, 张彬, 夏振昊. 无机抗菌材料抗菌机理研究进展[J]. 材料导报, 2021, 35(1): 1105-1111.
[2] 孙振龙, 张桢焱, 周容涛, 闫顺杰, 殷敬华. 两性离子聚合物材料杀菌/抗黏附功能自适应转化的设计策略[J]. 材料导报, 2020, 34(23): 23199-23204.
[3] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[4] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[5] 王静, 王晓燕, 水中和, 冀志江, 赵春艳, 刘蕊蕊. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed