Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23199-23204    https://doi.org/10.11896/cldb.20030130
  高分子与聚合物基复合材料 |
两性离子聚合物材料杀菌/抗黏附功能自适应转化的设计策略
孙振龙1,2, 张桢焱1,2, 周容涛1,2, 闫顺杰1,2, 殷敬华1,2
1 威高集团有限公司,医用植入器械国家工程实验室,威海 264210
2 威高集团有限公司,山东省医用植入器械技术重点实验室,威海 264210
Strategies in the Design of Zwitterionic Polymer Materials with Self-adaptive Transition Between Bactericidal and Anti-adhesive Functions
SUN Zhenlong1,2, ZHANG Zhenyan1,2, ZHOU Rongtao1,2, YAN Shunjie1,2, YIN Jinghua1,2
1 National Engineering Laboratory of Medical Implantable Devices, WEGO Holding Company Limited, Weihai 264210, China
2 Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, China
下载:  全 文 ( PDF ) ( 4100KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 两性离子聚合物结构中同时存在阴离子基团和阳离子基团,具有高度的水化能力和良好的生物相容性,被广泛应用于抗污、药物载体、污水净化以及抗凝血材料等领域。基于两性离子聚合物开发智能转化型聚合物,目前已成为智能响应抗菌的重要研究方向之一,其核心是在两性离子聚合物上引入响应型基团,使聚合物在感知外界条件刺激后发生自适应转变,从而在“阳离子态”与“两性离子态”间按需切换。相比于传统的阳离子类抗菌聚合物,智能转化型两性离子聚合物抗菌材料主要有以下两个优点:一是无细菌滋生时聚合物保持良好的生物相容性,不会对正常组织细胞造成损伤,而发生细菌感染后聚合物在外界刺激下自适应调整为杀菌状态,甚至在完成杀菌后可通过调控关闭抗菌状态;二是将两性离子聚合物固定在基底材料表面后,可以防止细菌、蛋白和其他污染物在表面黏附,从而避免抗菌表面的抗菌效果降低甚至消失。
本文综述了智能转化型两性离子聚合物抗菌材料的研究进展,阐述了构建外源性响应和内源性响应聚合物抗菌材料的主要策略,探讨了智能抗菌材料在阳离子态和两性离子态之间转换的机理,并介绍了智能转化型两性离子抗菌剂在抗菌材料领域的应用,最后对两性离子聚合物抗菌材料的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙振龙
张桢焱
周容涛
闫顺杰
殷敬华
关键词:  阳离子抗菌聚合物  两性离子聚合物  刺激响应  自适应转化  智能抗菌材料    
Abstract: Zwitterionic polymers contain both anionic and cationic groups and exhibit strong hydration and good biocompatibility, which have been widely used in antifouling, drug carriers, sewage purification, anticoagulant materials and other fields. Self-adaptive materials based on zwitterionic polymers have become an important research direction for smart antibacterial area. The core design of smart zwitterionic polymers is introducing the responsive groups to their structure, rendering the transition between cationic state and the zwitterionic states under different external stimuli. Compared with the traditional antibacterial cationic polymers, the smart self-adaptive antibacterial zwitterionic polymers have the following advantages. First, self-adaptive zwitterionic polymers exhibit a good biological compatibility to normal tissue and cells under physiological conditions, automatically switch into a bactericidal state when bacteria infection occurs, and even the bactericidal state can be accordingly turned off. Second, zwitterionic polymer immobilizing on substrate can prevent the bacteria, protein and other contaminants from adhering to the surface, to avoid the reduction or even disappearance of the antibacterial functionality.
In this review, the progress of the antibacterial zwitterionic materials with self-adaptive transition is reviewed. The main approaches to design such smart antibacterial materials responding to exogenous and endogenous stimuli are described, the conversion mechanism between cationic and zwitterionic states is also discussed,and the applications of zwitterionic materials in antibacterial area are introduced. Furthermore, the future development of zwitterionic antibacterial materials are prospected.
Key words:  cationic antibacterial polymer    zwitterionic polymer    stimuli responsive    self-adaptive transition    smart antibacterial materials
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  O647.1  
基金资助: 国家重点研发计划项目(2017YFC1104800);国家新材料生产应用示范平台建设项目(TC190H3ZV);中国博士后科学基金资助项目(2017M621225);山东省博士后创新项目(鲁人社字[2019]173号);威海市博士后项目(威人设字[2018]45号);中科院-威高集团高技术研究发展计划
通讯作者:  sjyan@weigaogroup.com   
作者简介:  孙振龙,威高集团有限公司工程师、公共事务部经理。主要研究方向为医用高分子材料及医疗器械。主导申请并建设医用植入器械国家工程实验室、山东省高性能医疗器械创新中心和山东省高端医疗器械技术创新中心等各类省级以上科研平台10余项。
闫顺杰,威高集团有限公司高级工程师、山东省医用植入器械重点实验室副主任。2017年7月毕业于中国科学院大学,获博士学位。主要研究方向为生物医用材料表面功能化及医疗器械。发表国内外论文30余篇,获国家授权发明专利5项,主持参与博士后基金、国家自然科学基金8项,参与国家新材料生产应用示范平台建设项目、国家重点研发计划、山东省重点研发计划(重大科技创新工程)等多个项目。
引用本文:    
孙振龙, 张桢焱, 周容涛, 闫顺杰, 殷敬华. 两性离子聚合物材料杀菌/抗黏附功能自适应转化的设计策略[J]. 材料导报, 2020, 34(23): 23199-23204.
SUN Zhenlong, ZHANG Zhenyan, ZHOU Rongtao, YAN Shunjie, YIN Jinghua. Strategies in the Design of Zwitterionic Polymer Materials with Self-adaptive Transition Between Bactericidal and Anti-adhesive Functions. Materials Reports, 2020, 34(23): 23199-23204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030130  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23199
1 He B, Ma S, Peng G, et al. Nanomedicine: Nanotechnology, Biology, and Medicine,2018,14(2),365.
2 Qian Y, Zhang D, Wu Y, et al. Acta Polymerica Sinica, 2016(10), 1300(in Chinese).
钱宇芯,张丹丰,武月铭,等.高分子学报,2016(10),1300.
3 Soenen S, Parak W, Rejman J, et al.Chemical Reviews,2015,115(5),2109.
4 Lv X, Liu C, Song S, et al. RSC Advances,2018,8(6),2941.
5 Li C, Sun R, Zeng Q, et al. Polymer Bulletin,2011(3),79(in Chinese).
李淳,孙蓉,曾秋苑,等.高分子通报,2011(3),79.
6 Cherkasov A, Jankovic B. Molecules,2004,9(12),1034.
7 Xie X, Cong W, Zhao F, et al. Journal of Enzyme Inhibition and Medicinal Chemistry,2018,33(1),98.
8 Liu P, Xu G, Pranantyo D, et al. ACS Biomaterials Science & Enginee-ring,2018,4(1),40.
9 Cheng G, Li G, Xue H, et al. Biomaterials,2009,30(28),5234.
10 Yuan S, Li Y, Luan S, et al. Journal of Materials Chemistry B,2016,4(6),1081.
11 Yan S, Zhang C, Lv H. Journal of Functional Polymers,2020,33(1),1(in Chinese).
闫树鹏,张冲,吕华.功能高分子学报,2020,33(1),1.
12 Yu Q, Wu Z, Chen H. Acta Biomaterialia,2015,16,1.
13 Hucknall A, Rangarajan S, Chilkoti A. Advanced Materials,2009,21(23),2441.
14 Leng C, Sun S, Zhang K, et al. Acta Biomaterialia,2016,40,6.
15 Mi L, Bernards M, Cheng G, et al. Biomaterials,2010,31(10),2919.
16 Wei T, Tang Z, Yu Q, et al. ACS Applied Materials & Interfaces,2017,9(43),37511.
17 Yu Q, Chen H. Acta Polymerica Sinica,2020,51(4),319(in Chinese).
于谦,陈红.高分子学报,2020,51(4),319.
18 DeVinney R, Steele-Mortimer O, Finlay B. Trends in Microbiology,2000,8(1),29.
19 Yu L, Chen Y, Chen H. Chinese Chemical Letters,2017,28(9),1841.
20 Jin X, Xiong Y, Zhang X, et al. Advanced Functional Materials,2019,29(17),1807915.
21 Ilíková M, Tká J, Kasák P. Polymers,2015,7(11),2344.
22 Li X, Wu B, Chen H, et al. Journal of Materials Chemistry B,2018,6(26),4274.
23 Cao B, Li L, Wu H, et al. Chemical Communications,2014,50(24),3234.
24 Shao Q, Jiang S. Advanced Materials,2015,27(1),15.
25 Cao Z, Brault N, Xue H, et al. Angewandte Chemie International Edition,2011,50(27),6102.
26 Cheng G, Xue H, Zhang Z, et al. Angewandte Chemie International Edition,2008,47(46),8831.
27 Cao Z, Mi L, Mendiola J, et al. Angewandte Chemie International Edition,2012,51(11),2602.
28 Jain P, Hung H, Li B, et al. Langmuir,2019,35(5),1864.
29 Yu W, Hanna D, Huang C, et al. Chemical Communications,2017,53(65),9143.
30 Wang X, Yuan S, Guo Y, et al. Colloids & Surfaces B: Biointerfaces,2015,136,7.
31 Cui J, Miguel V, del Campo A. Macromolecular Rapid Communications,2013,34(4),310.
32 Spagnul C, Turner L, Boyle R. Journal of Photochemistry and Photobiology B: Biology,2015,150,11.
33 Hassan F, Sassa T, Hirose T, et al. Polymer Journal,2018,50(6),455.
34 Fredrich S, Bonasera A, Valderrey V, et al. Journal of the American Chemical Society,2018,140(20),6432.
35 Schiphorst T, Coleman S, Stumpel J, et al. Chemistry of Materials,2015,27(17),5925.
36 Soboliak P, Špírek M, Katrlík J, et al. Macromolecular Rapid Communications,2013,34(8),635.
37 Jin Q, Cai T, Wang Y, et al.ACS Macro Letters,2014,3(7),679.
38 Cao B, Lee C J, Zeng Z, et al. Chemical Science,2015,7(3),1976.
39 Cao B, Li L, Tang Q, et al. Biomaterials,2013,34(31),7592.
40 Cao B, Tang Q, Li L, et al. Chemical Science,2015,6(1),782.
41 Yang Y, Reipa V, Liu G, et al. ACS Applied Materials & Interfaces,2018,10(10),8566.
42 Hu K, Schmidt N, Zhu R, et al. Macromolecules,2013,46(5),1908.
43 Ding C, Yan Z, Ren J, et al. Chemistry-A European Journal,2017,23(59),14883.
44 Hu J, Quan Y, Lai Y, et al. Journal of Controlled Release,2017,247,145.
45 Pichavant L, Bourget C, Durrieu M, et al. Macromolecules,2011,44(20),7879.
46 Dunn A, Dunn D, Macmillan A, et al. Polymer Chemistry,2014,5(10),3311.
47 Wang Y,Gu Z, Wang W, et al. Chinese Journal of New Drugs,2015(7),782(in Chinese).
王杨,顾准,王伟,等.中国新药杂志,2015(7),782.
48 Tang R, Ji W, Wang C. Macromolecular Chemistry & Physics,2011,212(11),1185.
49 Liu H, Zhou J. Progress in Chemistry,2012,24(11),2187(in Chinese).
刘红艳,周健.化学进展,2012,24(11),2187.
50 Jiang S, Cao Z. Advanced Materials,2010,22(9),920.
51 Cao B, Tang Q, Li L, et al. Advanced Healthcare Materials,2013,2(8),1096.
52 Hancock R E W, Sahl H G. Nature Biotechnology,2006,24(12),1551.
53 Vishnepolsky B, Gabrielian A, Rosenthal A, et al. Journal of Chemical Information and Modeling,2018,58(5),1141.
54 Zhang J, Zhou R, Wang H, et al. Applied Surface Science,2019,497,143480.
55 Wang Y, Huang X, Chen J, et al. Materials Reports: Review Papers,2019,33(1),8(in Chinese).
王迎军,黄雪连,陈军建,等.材料导报:综述篇,2019,33(1),8.
56 Xiong M, Bao Y, Xu X, et al. Proceedings of the National Academy of Sciences of the United States of America,2017,114(48),12675.
57 Zelzer M, Todd S J, Hirst A R, et al. Biomaterials Science,2013,1(1),11.
58 Standish A, Morona R. Antioxidants & Redox Signaling,2014,20(14),2274.
59 Wei T, Yu Q, Chen H. Advanced Healthcare Materials,2019,8(3),1801381.
60 Peng S, Barba-Bon A, Pan Y C, et al. Angewandte Chemie International Edition,2017,56(49),15742.
61 Xiong M, Han Z, Song Z, et al. Angewandte Chemie International Edition,2017,56(36),10826.
62 Su L, Li Y, Liu Y, et al. Macromolecular Bioscience,2019,19(12),1900289.
63 Krumm C, Harmuth S, Hijazi M, et al. Angewandte Chemie International Edition,2014,53(15),3830.
64 Chen S, Chen Q, Li Q, et al. Chemistry of Materials,2018,30(5),1782.
[1] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed