Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030209-8    https://doi.org/10.11896/cldb.22030209
  无机非金属及其复合材料 |
引气剂起泡和稳泡能力的温度敏感性研究
罗祥, 王玲*, 王振地
中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
Temperature Susceptibility of Foamability and Foam Stability of Air-entraining Agent
LUO Xiang, WANG Ling*, WANG Zhendi
State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 6946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高原高寒地区混凝土施工时,低温影响引气剂作用效果。为研究不同种类引气剂作用效果的温度敏感性,本工作基于Waring-Blender法测试获得了三种不同种类引气剂溶液在0~30 ℃的泡沫体积,研究了引气剂分子间相互作用、表面活性参数和体相黏度随温度的变化规律。引气剂分子间相互作用力的温度敏感性因分子结构不同而有所差异。灰色关联分析显示,影响引气剂溶液起泡性的关键因素为表面张力γ、最大吸附量Γmax和最小分子占据面积Amin,稳泡性受Γmaxγ和体相黏度η控制。随温度降低,不同种类引气剂表面活性的温度敏感性不同,γ、Γmaxη增大幅度以及Amin减小幅度均不同。引气剂起泡性和稳泡性的温度敏感性受多因素共同影响。研究结果促进了对不同引气剂作用效果温度敏感性的更深入理解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗祥
王玲
王振地
关键词:  引气剂  起泡性  稳泡性  表面张力  灰色关联分析    
Abstract: Low temperature affects the usage of air-entraining agents (AEA) during the concrete construction in cold area. In order to study the different responses to temperature change of the foaming properties of different kinds of AEA, the foam volume, the surface activity and the bulk viscosity of three kinds of AEA were tested at the temperature between 0 ℃ and 30 ℃ using the method of Waring-Blender. The temperature susceptibility of intermolecular interaction force varies with different molecular structures. The grey correlation analysis results show the key factors influencing the foamability of AEA are the surface tension γ, the saturation adsorption amount Γmax, the minimum molecular area Amin. As for the foam stability of AEA, the key factors are γ, Γmax and η. With temperature decreases, the increasing degree of the surface tension, the maximum adsorption and the viscosity, together with the decreasing degree of the minimum molecular area when the temperature changes from 30 ℃ to 0 ℃ varies because of the temperature susceptibility of surface activity. The temperature susceptibility of foaming capacity and stability of AEA are affected by various factors. The research is expected to provide an in-depth understanding of the temperature sensitivity of different AEAs.
Key words:  air-entraining agent    foamability    foam stability    surface tension    grey correlational analysis
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51972295);国家重点研发计划(2017YFB0309903)
通讯作者:  *王玲,中国建筑材料科学研究总院教授级高级工程师、博士研究生导师。1990年同济大学建材系无机非金属材料专业本科毕业,1993年武汉工业大学北京研究生部材料学专业硕士毕业后到中国建筑材料科学研究总院工作至今。目前主要从事混凝土耐久性和混凝土外加剂等方面的研究工作。发表论文70篇,出版专著3本;获发明专利40项,编写国标15项和RILEM标准1项,获国家和省部级科技奖励10项。wangling@cbmamail.com.cn   
作者简介:  罗祥,2019年7月于清华大学土木工程系获得工学学士学位。现为中国建筑材料科学研究总院硕士研究生,在王玲教授的指导下进行研究,参与国家自然科学基金项目和国家重点研发计划项目研究工作,研究重点为混凝土引气剂和混凝土耐久性。
引用本文:    
罗祥, 王玲, 王振地. 引气剂起泡和稳泡能力的温度敏感性研究[J]. 材料导报, 2023, 37(18): 22030209-8.
LUO Xiang, WANG Ling, WANG Zhendi. Temperature Susceptibility of Foamability and Foam Stability of Air-entraining Agent. Materials Reports, 2023, 37(18): 22030209-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030209  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030209
1 Du L X, Folliard K J.Cement and Concrete Research, 2005, 35(8), 1463.
2 Ren W X, Ke G J, He X Y, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(2), 331 (in Chinese).
任崴峣, 柯国炬, 何晓雁, 等. 硅酸盐通报, 2015, 34(2), 331.
3 Wang Q C, Zhang K, Wang Q S. Materials Reports, 2015, 29(14), 131 (in Chinese).
王起才, 张凯, 王庆石.材料导报, 2015, 29(14), 131.
4 Chen H X, Wang T, He R, et al. Journal of Chang'an University (Natural Science Edition), 2020, 40(2), 30 (in Chinese).
陈华鑫, 王铜, 何锐, 等.长安大学学报(自然科学版), 2020, 40(2), 30.
5 Kapetas L, Vincent-Bonnieu S, Danelis S, et al.Journal of Industrial and Engineering Chemistry, 2016, 36, 229.
6 Yang J, Liu A, Li Z, et al.IOP Conference Series: Earth and Environmental Science, 2020, 514(5), 052051.
7 Tamura T, Takeuchi Y, Kaneko Y.Journal of Colloid and Interface Science, 1998, 206(1), 112.
8 Águila-Hernández J, Trejo A, García-Flores B E. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308(1), 33.
9 Ribeiro C P, Mewes D. Chemical Engineering Science, 2006, 61(17), 5704.
10 Cantat I, Cohen-Addad S, Elias F, et al.Foams: Structure and Dyna-mics, Oxford University Press, UK, 2013, pp. 25.
11 Tian P, Liu J P, Wang L, et al. Handbook of concrete admixtures, Che-mical Industry Press, China, 2009, pp. 116 (in Chinese).
田培, 刘加平, 王玲, 等.混凝土外加剂手册, 化学工业出版社, 2009, pp. 116.
12 Shan G C, Lu C, Chen J, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1256 (in Chinese).
单广程, 陆超, 陈健, 等. 硅酸盐学报, 2020, 48(8), 1256.
13 Shan G C, Zhao S, Qiao M, et al.Construction and Building Materials, 2020, 237(C), 117625.
14 Xia Y. New Building Materials, 2021, 48(7), 131 (in Chinese).
夏艺.新型建筑材料, 2021, 48(7), 131.
15 Parhizkar M, Edirisinghe M, Stride E. Royal Society of Chemistry Advances, 2015, 5(14), 10751.
16 Li Y. Characteristics of air bubbles over the life cycle under low air pressure and improvement of the performance of air entrained concrete. Ph,D, Thesis, China Building Materials Academy, China, 2020 (in Chinese).
李扬. 低气压下气泡全生命期特征及引气混凝土性能提升.博士学位论文, 中国建筑材料科学研究总院, 2020.
17 ASTM International. Standard test method for foam in aqueous media (Blender Test), US, 1989, pp.1.
18 Xu Z C. Study on the synthesis and physicochemical properties of novel cationic and zwitterionic surfactants. Ph.D. Thesis, Technical Institute of Physics and Chemistry, China, 2009 (in Chinese).
徐志成. 新型阳离子和两性离子表面活性剂的合成及理化性质的研究.博士学位论文, 中国科学院研究生院(理化技术研究所), 2009.
19 Israelachvili J N. Intermolecular and surface forces (3rd edition), Academic press, US, 2011, pp. 161.
20 Zhao G X, Zhu B Y. Principles of surfactant action, China Light Industry Press, China, 2003, pp. 271 (in Chinese).
赵国玺, 朱瑶.表面活性剂作用原理, 中国轻工业出版社, 2003, pp. 271.
21 Deng J L.The grey system theory tutorial, Huazhong University of Science and Technology Press, China, 1990, pp.33 (in Chinese).
邓聚龙. 灰色系统理论教程, 华中工学院出版社, 1990, pp. 33.
22 Mao L X, Huang Z J, Shang Y, et al. Jiangsu Construction, 2010 (6), 89(in Chinese).
毛良喜, 黄志讲, 尚燕, 等. 江苏建筑, 2010 (6), 89.
23 Delale C F, Hruby J, Marsik F.The Journal of Chemical Physics, 2003, 118(2), 792.
24 Myers D.Surfaces, interfaces, and colloids: principles and applications (2nd edition), John Wiley & Sons, US, 2013, pp. 299.
[1] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[2] 刘自刚, 樊丁, 黄勇, 刘云华, 周晓静, 朱婷婷. 不锈钢电弧辅助活性TIG焊熔池表面张力变化机理[J]. 材料导报, 2022, 36(17): 21050080-6.
[3] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[4] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[5] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[6] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[7] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[8] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[9] 屈伟, 范同祥. 金属/陶瓷润湿性的实验表征和理论预测研究进展[J]. 材料导报, 2019, 33(21): 3606-3612.
[10] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed