Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21050080-6    https://doi.org/10.11896/cldb.21050080
  金属与金属基复合材料 |
不锈钢电弧辅助活性TIG焊熔池表面张力变化机理
刘自刚1,2, 樊丁2,*, 黄勇2, 刘云华1,3, 周晓静1,3, 朱婷婷1,3
1 诺力智能装备股份有限公司,浙江 湖州 313100
2 兰州理工大学材料科学与工程学院,兰州 730050
3 浙江省智能物流装备工程技术研究中心,浙江 湖州 313100
Mechanism of Changes in the Surface Tension of Stainless Steel Arc-Assisted Activating TIG Welding Molten Pool
LIU Zigang1,2, FAN Ding2,*, HUANG Yong2, LIU Yunhua1,3, ZHOU Xiaojing1,3, ZHU Tingting1,3
1 Noblelift Intelligent Equipment Co., Ltd.,Huzhou 313100,Zhejiang, China
2 School of Materials Science and Engineering,Lanzhou University of Technology, Lanzhou 730050, China
3 Engineering Research Center of Intelligent Logistics Equipment of Zhejiang Province,Huzhou 313100,Zhejiang, China
下载:  全 文 ( PDF ) ( 3813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对不锈钢电弧辅助活性钨极氩弧焊,采用一套骤冷装置,保留熔池的高温状态,然后截取骤冷的表层金属并重熔,利用座滴法测试熔池的表面张力,进行了表面张力温度系数变化机理的分析,研究了活性元素对熔池表面张力的影响,同时验证了表面张力温度系数改变理论。测试结果表明: 当辅助电弧中不引入O2时,熔池的表面张力温度系数为负值; 当辅助电弧中O2引入量为1.0 L/min和1.5 L/min时,熔池的表面张力温度系数为正值; 当辅助电弧中O2引入量达到2.0 L/min时,熔池的表面张力温度系数再次变为负值。经过分析测试骤冷熔池中的O元素分布,认为O元素在熔池表面的富集导致熔池表面张力的减小和熔池表面张力温度系数的改变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘自刚
樊丁
黄勇
刘云华
周晓静
朱婷婷
关键词:  不锈钢  AA-TIG焊  表面张力  表面张力温度系数    
Abstract: For stainless steel arc assisted activating tungsten inert gas welding, this paper used a drop method to test the surface tension of molten pool. In order to keep the high temperature state of molten pool, this paper adopted a quenching device to cooling molten pool rapid, and then cut off quenching surface layer metal and then remelt it. The mechanism of active element to affect the surface tension and temperature coefficient of molten pool was analyzed. The results show that the surface tension temperature coefficient of the molten pool is negative when no O2 is introduced into the auxiliary arc, while with the amount of O2 introduced into the auxiliary arc 1.0 L/min or 1.5 L/min, the surface tension temperature coefficient of the molten pool is positive, and when the amount of O2 introduced reaches 2.0 L/min, the surface tension temperature coefficient of the molten pool becomes negative again. After measuring and analyzing the distribution of oxygen element in the quench bath, it can be concluded that the concentration of oxygen element on the surface of the weld pool leads to the decrease of the surface tension and the change of the surface tension temperature coefficient of motten pool.
Key words:  stainless steel    AA-TIG welding    surface tension    surface tension temperature coefficient
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TG444  
基金资助: 国家自然科学基金(51074084)
通讯作者:  *fand@lut.edu.cn   
作者简介:  刘自刚,高级工程师。2010年于辽宁工程技术大学获得学士学位,2013年毕业于兰州理工大学,获工学硕士学位。目前在诺力智能装备股份有限公司工作,主要从事新型高效焊接方法、自动化焊接工艺及设备等方面的研究。在国内外重要期刊发表论文9篇,已申请专利40余项。
樊丁,教授,博士研究生导师。1982年于兰州理工大学获得学士学位,1984年毕业于西安交通大学,获工学硕士学位。享受国务院特殊津贴专家,国际焊接学会IIW-SG212焊接物理研究组委员,中国焊接学会常务理事。主要从事焊接物理、焊接方法与智能控制及激光加工等方面的研究。发表论文300余篇。
引用本文:    
刘自刚, 樊丁, 黄勇, 刘云华, 周晓静, 朱婷婷. 不锈钢电弧辅助活性TIG焊熔池表面张力变化机理[J]. 材料导报, 2022, 36(17): 21050080-6.
LIU Zigang, FAN Ding, HUANG Yong, LIU Yunhua, ZHOU Xiaojing, ZHU Tingting. Mechanism of Changes in the Surface Tension of Stainless Steel Arc-Assisted Activating TIG Welding Molten Pool. Materials Reports, 2022, 36(17): 21050080-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050080  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21050080
1 Fan D, Lin T, Huang Y, et al. Transactions of the China Welding Institution, 2008, 29(12), 1 (in Chinese).
樊丁,林涛, 黄勇, 等. 焊接学报, 2008, 29(12), 1.
2 Huang Y, Fan D, Lin T, et al. Chinese Journal of Mechanical Enginee-ring, 2010, 46(8), 68 (in Chinese).
黄勇, 樊丁, 林涛, 等. 机械工程学报, 2010, 46(8), 68.
3 Leconte S, Paillard P, Chapelle P, et al. Science and Technology of Welding and Joining, 2006, 11 (4), 389.
4 Fujii H, Sato T, Lu S P,et al. Materials Science and Engineering, 2008, 495(1-2), 296.
5 Heiple C R, Roper J R, Stagner R T, et al. Welding Journal, 1982, 62(3), 72.
6 Tanaka M, Shimizu T, Terasaki H, et al. Science and Technology of Welding and Joining, 2006, 5(6), 397.
7 Leconte S, Paillard P, Saindrenan J. Science and Technology of Welding and Joining, 2006, 11(1), 43.
8 Liu L M, Zhang Z D, Song G, et al. Metallurgical and Materials Tran-sactions A: Physical Metallurgy and Materials Science, 2007, 38(3), 649.
9 Dong W C, Lu S P, Li D Z, et al. Acta Metallurgica Sinica, 2008, 44(2), 249 (in Chinese).
董文超, 陆善平, 李殿中, 等. 金属学报, 2008, 44(2), 249.
10 Zhang R H, Yin Y, Fan D, et al. Electric Welding Machine, 2008, 38(12), 41 (in Chinese).
张瑞华, 尹燕, 樊丁, 等. 电焊机, 2008, 38(12), 41.
11 Wei Y H, Xu Y L, Sun Y J, et al. Transactions of the China Welding Institution, 2009, 30(2), 37 (in Chinese).
魏艳红, 徐艳利, 孙燕洁, 等. 焊接学报, 2009, 30(2), 37.
12 Zhang R H, Yin Y, Fan D, et al. Chinese Journal of Mechanical Engineering, 2008, 44(5), 175 (in Chinese).
张瑞华, 尹燕, 樊丁, 等. 机械工程学报, 2008, 44(5), 175.
13 Yang C L, Makoto O, Tannaka M. Welding and Joining, 2000(6), 11(in Chinese).
杨春利, 牛尾诚夫, 田中学. 焊接, 2000(6), 11.
14 Gu Y F, Bian C H, Li C K, et al. Transactions of the China Welding Institution, 2020, 41(6), 48 (in Chinese).
顾玉芬, 边春红, 李春凯, 等. 焊接学报, 2020, 41(6), 48.
15 Qi X L, Liu W H, Zhao Q X, et al. Ordnance Material Science Enginee-ring, 2019, 42(3), 91(in Chinese).
綦秀玲, 刘维豪, 赵麒翔, 等. 兵器材料科学与工程, 2019, 42(3), 91.
16 Li C K, Shi Y, Gu Y F, et al. Journal of Manufacturing Processes, 2018, 32, 395.
17 Tang Y Z, Huang C, Huang F X, et al. Journal of Functional Materials, 2018, 49(6), 6035 (in Chinese).
唐义洲, 黄灿, 黄福祥, 等. 功能材料, 2018, 49(6), 6035.
18 Wouts M. Communications in Mathematical Physics, 2009, 289(1), 157.
19 Egry I. International Journal of Theoretical Physics, 2005, 26 (18), 931.
20 Howell E A, Megarrdis C M, McNallan M. International Journal of Heat and Fluid Flow, 2003, 25(1), 91.
21 Residori S, Pampaloni E, Buah-Bassuah P K, et al. European Physical Journal B, 2000, 15(2), 331.
22 Matsumoto T, Misono T, Fujii H, et al. Journal of Materials Science: Materials in Medicine, 2005, 40(9-10), 2197.
23 Egry I, Ricci E, Novakovic R, et al. Advances in Colloid and Interface Science, 2010, 159(2), 198.
24 Lin Q L. Wettability and spreading dynamics of carbide ceramics by molten metals. Ph.D. Thesis, Jilin University, China, 2011(in Chinese).
林巧力. 金属熔体在碳化物陶瓷上的润湿性及铺展动力学. 博士学位论文, 吉林大学, 2011.
25 Bian X F, Wang W M, Li H, et al. Structure of metal melt, Shanghai Jiaotong University Press, China, 2003 (in Chinese).
边秀芳, 王伟民, 李辉, 等. 金属熔体结构, 上海交通大学出版社, 2003.
26 Fan D, Kang Z X, Huang Y. Transactions of the China Welding Institution, 2012, 33(6), 5(in Chinese).
樊丁,康再祥,黄勇. 焊接学报, 2012, 33(6), 5.
27 Fan D, Kang Z X, Huang Y, et al. Transactions of the China Welding Institution, 2012, 33(11), 21(in Chinese).
樊丁, 康再祥, 黄勇等. 焊接学报, 2012, 33(11), 21.
28 Kang Z X. Study on transition behavior of oxygen element in stainless steel arc welding AA-TIG. Master’s Thesis, Lanzhou University of Technology, China, 2012(in Chinese).
康再祥. 不锈钢分离电弧AA-TIG焊氧元素过渡行为研究. 硕士学位论文, 兰州理工大学, 2012.
29 Guo J J, Fu H Z. Alloy molten and process, China Machine Press, China, 2005 (in Chinese).
郭景杰, 傅桓志. 合金熔体及其处理, 机械工业出版社, 2005.
30 Yuan Z F, Ke J J, Li J. Surface tenssion of meltall and alloy, Science Press, China, 2006 (in Chinese).
袁章福, 柯家骏, 李晶. 金属及合金的表面张力, 科学出版社, 2006.
31 Sahoo P, DebRoy T. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1988, 19(3), 483.
32 Aïmen E G, Patrice C. Scientific Reports, 2019, 9(1), 1.
[1] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 何翠竹. 控制棒驱动机构耐压壳钩爪段用马氏体不锈钢研究[J]. 材料导报, 2022, 36(Z1): 22040180-4.
[4] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[5] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[6] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[7] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[8] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[9] 王呼和, 新巴雅尔, 李晓杰. 爆炸冲击诱发AISI304不锈钢马氏体微观形貌研究[J]. 材料导报, 2022, 36(10): 20110061-6.
[10] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[11] 郭金刚, 陈红, 李俊荣, 唐子龙, 陈清明. 316L不锈钢双极板元素富集耐腐蚀特性研究[J]. 材料导报, 2021, 35(z2): 391-394.
[12] 沈天阔. 控制棒驱动机构可拆接头用X12CrNi13马氏体不锈钢冲击失效分析及改进[J]. 材料导报, 2021, 35(z2): 404-409.
[13] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[14] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[15] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed