Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21050130-5    https://doi.org/10.11896/cldb.21050130
  高分子与聚合物基复合材料 |
国产M40J级石墨纤维与氰酸酯树脂的界面性能
赵臻璐1,*, 刘洪新1, 张鑫1, 孙天峰1, 黎昱1, 陈维强1, 顾轶卓2, 梁春祖1
1 北京卫星制造厂有限公司,北京 100094
2 北京航空航天大学材料科学与工程学院,北京 100191
Interfacial Properties of Domestic M40J Carbon Fiber/Cyanate Ester Composites
ZHAO Zhenlu1,*, LIU Hongxin1, ZHANG Xin1, SUN Tianfeng1, LI Yu1, CHEN Weiqiang1, GU Yizhuo2, LIANG Chunzu1
1 Beijing Spacecrafts Manufacturing Co., Ltd., Beijing 100094, China
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
下载:  全 文 ( PDF ) ( 7556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析国产M40J级高模高强型石墨纤维在航天器结构中应用的可行性,对两种国产的M40J级石墨纤维(GCM40J-A、GCM40J-B)与航天器用氰酸酯树脂(BS-4)体系的界面性能进行评价。采用扫描电镜(SEM)、原子力显微镜(AFM)、热重法(TG)、表面张力仪、动态接触角法、红外光谱(IR)等分别对两种国产的M40J级石墨纤维、航天器用氰酸酯树脂体系的特性以及纤维与树脂间的界面性能进行分析,并与东丽M40J石墨纤维进行对比。结果表明,三种纤维表面沟槽明显,纤维表面粗糙度较相近;GCM40J-A、GCM40J-B、M40J与氰酸酯的接触角分别为107°、101.5°和100.3°;三种纤维上浆剂的耐热温度均高于230 ℃,比氰酸酯基体的固化温度高;GCM40J-A、GCM40J-B纤维上浆剂与氰酸酯的反应程度高于M40J,GCM40J-A/BS-4和GCM40J-B/BS-4的短梁剪切强度分别为85.9 MPa、84.7 MPa,高于M40J/BS-4(72.5 MPa)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵臻璐
刘洪新
张鑫
孙天峰
黎昱
陈维强
顾轶卓
梁春祖
关键词:  石墨纤维  氰酸酯  表面特性  界面性能  力学性能    
Abstract: In order to analyze the feasibility of the application of domestic M40J carbon fiber in the spacecrafts, the interfacial properties of two kinds of domestic M40J carbon fibers (GCM40J-A, GCM40J-B) and cyanate ester(BS-4) system were evaluated by SEM, AFM, TG, surface tension meter, dynamic contact angle test and IR. The results show that the surface roughness of domestic M40J carbon fibers is similar to Toyal M40J carbon fiber, and the dynamic contact angles between three kinds of carbon fibers and BS-4 are 107°(GCM40J-A), 101.5°(GCM40J-B) and 100.3°(M40J) respectively. The heat resistance temperature of the three kinds of fiber sizing agents are higher than 230 ℃, which is also higher than the curing temperature of cyanate ester. Moreover, the sizing agents of GCM40J-A and GCM40J-B have higher reactivity than that of M40J, and the interlaminar shear strengths (ILSS) of GCM40J-A/BS-4 and GCM40J-B/BS-4 are 85.9 MPa and 84.7 MPa, which are higher than that of M40J/BS-4(72.5 MPa).
Key words:  carbon fiber    cyanate ester    surface property    interfacial property    mechanical property
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB33  
通讯作者:  *zhaozl529@163.com   
作者简介:  赵臻璐,博士。2011年获北京航空航天大学材料学博士学位,现任北京卫星制造厂有限公司复合材料开发与成型技术专业组专家,主要从事星船复合材料方面的研究工作。
引用本文:    
赵臻璐, 刘洪新, 张鑫, 孙天峰, 黎昱, 陈维强, 顾轶卓, 梁春祖. 国产M40J级石墨纤维与氰酸酯树脂的界面性能[J]. 材料导报, 2022, 36(17): 21050130-5.
ZHAO Zhenlu, LIU Hongxin, ZHANG Xin, SUN Tianfeng, LI Yu, CHEN Weiqiang, GU Yizhuo, LIANG Chunzu. Interfacial Properties of Domestic M40J Carbon Fiber/Cyanate Ester Composites. Materials Reports, 2022, 36(17): 21050130-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050130  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21050130
1 Tang J, Stephen K. Spacecraft Environment Engineering, 2010, 27(5), 552.
2 Bansemir H, Haider O. Cryogenics, 1998, 38(1), 51.
3 Zhao Z L, Chen W Q, Zhang Y S, et al. Journal of Astronautics, 2016, 37(5), 625(in Chinese).
赵臻璐, 陈维强, 张玉生, 等. 宇航学报, 2016, 37(5), 625.
4 Wo X Y, Zhou H Z. Spacecraft Recovery & Remote Sensing, 2002, 23(3), 52(in Chinese).
沃西源, 周宏志. 航天返回与遥感, 2002, 23(3), 52.
5 Jiang L X, He S Y, Yang S Q, et al. Journal of Materials Engineering, 2001(9), 39(in Chinese).
姜利祥, 何世禹, 杨士勤, 等. 材料工程, 2001(9), 39.
6 Arnold C, Mackenzie P, Malhotra V, et al. In: International SAMPE symposium and Exhibition. Anaheim, 1992, pp.128.
7 Seungjin H, Jan T L, Yasuhiro Y, et al. Carbon, 2008, 46, 1060.
8 Dai Z S, Shi F H, Zhang B Y, et al. Applied Surface Science, 2011, 257, 6980.
9 Peng G Q, Yang J J, Cao Z H, et al. Materials Reports A:Review Papers, 2011, 25(4), 1(in Chinese).
彭公秋, 杨进军, 曹正华, 等. 材料导报:综述篇, 2011, 25(4), 1.
10 Shi F H, Dai Z S, Zhang B Y. Journal of Aeronautical Materials, 2010, 30(3), 43 (in Chinese).
石峰晖, 代志双, 张宝艳. 航空材料学报, 2010, 30(3), 43.
11 Li W D, Zhang J D, Liu G, et al. Acta Materiae Compositae Sinica, 2016, 33(7), 1484(in Chinese).
李伟东, 张金栋, 刘刚, 等. 复合材料学报, 2016, 33(7), 1484.
12 Li J F, Zhang Y T, Zhang H J, et al. Fiber Reinforced Plastics/Compo-sites, 2013(5), 28(in Chinese).
李健芳, 张娅婷, 张宏杰, 等. 玻璃钢/复合材料, 2013(5), 28.
13 Li Z R, Zhang D, Xu L H, et al. Acta Materiae Compositae Sinica, 2015, 32(4), 1218(in Chinese).
李昭锐, 张东, 徐樑华, 等. 复合材料学报, 2015, 32(4), 1218.
14 Luo Y F, Zhao Y, Duan Y X, et a1. Materials & Design, 2011, 32(2), 94l.
15 Zhang R L, Huang Y D, Su D, et al. Materials & Design, 2012, 34, 649.
16 Wang Y F, Liu G, Peng G Q, et al. Journal & Materials Engineering, 2018, 46(4), 140(in Chinese).
王迎芬, 刘刚, 彭公秋, 等. 材料工程, 2018, 46(4), 140.
17 Luo Y F, Yang Z, Zhao Y, et a1. Materials Science and Technology, 2014, 22(4), 62(in Chinese).
罗云烽, 杨喆, 肇研, 等. 材料科学与工艺, 2014, 22(4), 62.
18 Liu W D, Chen J L, Li Y, et al. Journal of Materials Engineering, 2016, 44(10), 88(in Chinese).
刘卫丹, 陈俊林, 李阳, 等. 材料工程, 2016, 44(10), 88.
19 Hao H, Li P, Ling H, et al. Fiber Reinforced Plastics/Composites, 2013(1), 30(in Chinese).
郝华, 李鹏, 凌辉, 等. 玻璃钢/复合材料, 2013(1), 30.
20 Liu J, Tian Y, Chen Y, et al. Applied Surface Science, 2010, 256(21), 6199.
21 Xu Y X, Gu Y Z, Ma Q S, et al. Acta Materiae Compositae Sinica, 2016, 33(9), 1905(in Chinese).
徐永薪, 顾轶卓, 马全胜, 等. 复合材料学报, 2016, 33(9), 1905.
22 Zhang S J, Wang R N, Liu N, et al. Journal of Materials Engineering, 2019, 47(8), 118(in Chinese).
张世杰, 王汝敏, 刘宁, 等. 材料工程, 2019, 47(8), 118.
23 Shui X Y, Liu M, Zhu Y F, et al. Acta Materiae Compositae Sinica, 2016, 33(2), 273(in Chinese).
水兴瑶, 刘猛, 朱曜峰, 等. 复合材料学报, 2016, 33(2), 273.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed