Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21050180-10    https://doi.org/10.11896/cldb.21050180
  无机非金属及其复合材料 |
铁弹畴转向增韧:应用于陶瓷涂层的一种潜在高温增韧机制
杜金平, 王衍飞*, 刘荣军, 万帆
国防科技大学新型陶瓷纤维及其复合材料国防科技重点实验室,长沙 410073
Ferroelastic Domain Switching Toughening: a Potential High-temperature Toughening Mechanism for Ceramic Coatings
DU Jinping, WANG Yanfei*, LIU Rongjun, WAN Fan
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073,China
下载:  全 文 ( PDF ) ( 6597KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷具有极其优异的耐高温性能,是一种不可替代的可在高温等极端环境条件下服役的材料。然而,陶瓷的本征脆性已经严重制约了其更为广泛的应用,特别是在力、热条件复杂的极端高温环境下的应用,例如应用于高性能航空发动机上的热障涂层(TBCs)。陶瓷的高温增韧机制相对匮乏,其高温增韧目前已经成为一个亟待解决的关键问题。不同于传统利用纤维、晶须等增韧陶瓷的方式,铁弹畴转向增韧主要利用铁弹性材料在受外力下发生的铁弹畴转向过程来耗散驱动裂纹扩展的能量,是一种高温下依然有效的增韧机制,因而非常适用于高温陶瓷涂层的增韧。本文从铁弹性定义与铁弹畴转向增韧的基本原理出发,对铁弹畴转向增韧的研究进展进行了综述,分析了铁弹增韧的相对优势和发展前景。此外,本文就目前学界关注较多的铁弹性材料(包括氧化钇部分稳定的氧化锆(YSZ)、稀土铝酸盐、稀土铌酸盐和稀土钽酸盐)的研究和应用情况进行了重点介绍,并对相关材料的应用前景进行了展望。最后,本文以新型热障涂层材料稀土锆酸盐为代表介绍了以铁弹体作为增韧第二相的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜金平
王衍飞
刘荣军
万帆
关键词:  陶瓷  断裂韧性  铁弹性  铁弹畴转向增韧    
Abstract: Ceramic, an irreplaceable material which is used in high temperature and other extreme environmental conditions, has excellent high temperature stability. However, its intrinsic brittleness has seriously restricted the wide application, especially the application in extremely high temperature environment. For example, ceramics can act as thermal barrier coatings (TBCs) for high-performance aero engines. Toughening mechanism of ceramics available at high temperature is relatively scarce, and its high temperature toughening has become a key problem to be solved. Different from the traditional toughening methods of introducing fibers or whiskers, ferroelastic domain switching toughening, an effective toughening mechanism at high temperature, mainly uses the switching process of ferroelastic domain under external force to dissipate the energy driving crack growth. Therefore, it is quite suitable for the toughening of high-temperature ceramic coatings. This article, based on the basic principles of ferroelasticity and ferroelastic domain switching, reviews some progress of ferroelastic domain switching achieved in recent years, and discusses its relative advantages and development prospects. In addition, this article focuses on a detailed introduction of common ferroelastic phases such as yttria-stabilized zirconia(YSZ), rare earth aluminate, rare earth niobate and rare earth tantalate, and prospects the application of related materials. Finally, taking rare earth zirconates as the representative, the research progress of ferroelastics as a second toughening phase is introduced.
Key words:  ceramics    fracture toughness    ferroelasticity    ferroelastic domain switching toughening
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB34  
基金资助: 国防科工局稳定支持科研(WDZC20195500504);装备预研重点实验室基金(6142907200303)
通讯作者:  *wangyanfei@nudt.edu.cn   
作者简介:  杜金平,2020年6月本科毕业于国防科技大学,获得材料专业工学学士学位。现为国防科技大学空天科学学院材料科学与工程专业硕士研究生,目前主要研究方向为先进热障/环境障涂层材料。
王衍飞,博士,国防科技大学副研究员。分别于2006年、2009年获得国防科技大学材料专业学士、硕士学位,于2013年获得英国曼彻斯特大学材料学博士学位。现从事陶瓷基复合材料及先进陶瓷涂层的教学科研工作,主要研究方向包括先进陶瓷基复合材料及热障/环境障涂层,发表学术论文40余篇,出版学术专著1部。
引用本文:    
杜金平, 王衍飞, 刘荣军, 万帆. 铁弹畴转向增韧:应用于陶瓷涂层的一种潜在高温增韧机制[J]. 材料导报, 2022, 36(17): 21050180-10.
DU Jinping, WANG Yanfei, LIU Rongjun, WAN Fan. Ferroelastic Domain Switching Toughening: a Potential High-temperature Toughening Mechanism for Ceramic Coatings. Materials Reports, 2022, 36(17): 21050180-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050180  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21050180
1 Aizu K. Journal of the Physical Society of Japan, 1969, 27(2), 387.
2 Chen D R. Journal of Inorganic Materials, 1973(1), 43 (in Chinese).
陈大任. 无机材料学报, 1973(1), 43.
3 Yang B, Chen X M, Liu X Q. Journal of the European Ceramic Society, 2000, 20(8), 1153.
4 Mehta K. Virkar A V. Journal of the American Ceramic Society, 1990, 73(3), 567.
5 Jiang B L, Liu X L, Xu B, et al. Acta Physica Sinica, 1986(12), 1598(in Chinese).
蒋柏林, 刘希玲, 徐斌, 等.物理学报, 1986(12), 1598.
6 Ai S T, Zhong W L, Wang C L, et al. Acta Physica Sinica, 2002(2), 279(in Chinese).
艾树涛, 钟维烈, 王春雷, 等.物理学报, 2002(2), 279.
7 Yuan M, Chen P H, Jiang H L, et al. Jiangxi Chemical Industry, 2013 (1), 1(in Chinese).
袁明, 陈萍华, 蒋华麟, 等. 江西化工, 2013 (1), 1.
8 Huang K M, Li W X, Rao P G, et al. China Ceramics, 2007,43(11), 6(in Chinese).
黄康明, 李伟信, 饶平根, 等. 中国陶瓷, 2007, 43(11), 6.
9 Massey H, Mccrea W H. Journal of Victorian Culture, 2013, 18(3), 412.
10 Zou D L, Lu X C. Ceramics, 2007 (6), 5 (in Chinese).
邹东利, 路学成. 陶瓷, 2007 (6), 5.
11 Mercer C, Williams J R, Clarke D R, et al. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2007, 463(2081), 1393.
12 Virkar A, Jue J F, Smith P, et al. Phase Transitions, A Multinational Journal, 1991, 35(1), 27.
13 Virkar A, Matsumoto R. Journal of the American Ceramic Society, 1986, 69(10), 224.
14 Reece M J, Guiu F. Journal of the European Ceramic Society, 2001, 21(10-11), 1433.
15 Baither D, Bartsch M, Baufeld B, et al. Journal of the American Ceramic Society, 2001, 84(8), 1755.
16 Salje E K H. Annual Review of Materials Research, 1983, 42(1), 265.
17 Ren X, Pan W. Acta Materialia, 2014, 69, 397.
18 Yang H. Modification of La2Zr2O7 ceramic materials and fundamental study of thermal barrier coatings. Master's Thesis, National University of Defense Technology, China, 2016 (in Chinese).
杨焕. La2Zr2O7系陶瓷材料的改性及其热障涂层的基础研究. 硕士学位论文, 国防科技大学, 2016.
19 Zhao M, Jia Q Y, Liu H W, et al. Rare Metal Materials and Enginee-ring, 2013, 42(6), 473 (in Chinese).
赵蒙, 贾秋阳, 刘瀚文, 等. 稀有金属材料与工程, 2013, 42(6), 473.
20 Padture N P, Gell M, Jordan E H. Science, 2002, 296(5566), 280.
21 Kibsey M, Romualdez J, Huang X, et al. Journal of Engineering for Gas Turbines & Power, 2011, 133(12), 122101.
22 Loganathan A, Gandhi A S. Transactions of the Indian Institute of Metals, 2011, 64(1-2), 71.
23 Sharma K K, Kotru P N, Tandon R P, et al. Journal of Physics, Condensed Matter, 1998, 10(24), 5277.
24 Oomori M, Harai T. U.S. patent application, US6174832, 2001.
25 Bamzai K K, Kotru P N, Wanklyn B M. Applied Surface Science, 1998, 133(3), 195.
26 Liu X Q, Chen X M. Journal of the European Ceramic Society, 2004, 24(7), 1999.
27 Peng P. Research on novel rare earth aluminate materials for thermal barrier coatings. Master's Thesis, China University of Geosciences, China, 2010 (in Chinese).
彭鹏. 新型热障涂层用稀土铝酸盐材料的研究.硕士学位论文, 中国地质大学, 2010.
28 Wu P, Pelton A D. Journal of Alloys & Compounds, 1992, 179(1-2), 259.
29 Usman T, Murtaza G, Luo H, et al. Journal of Superconductivity and Novel Magnetism, 2017, 30(6),1389.
30 Islam M N, Araki W, Arai Y. Journal of the European Ceramic Society, 2017, 37(4),1665.
31 Scott J F. Physical Review B, 1969, 183, 823.
32 O'bryan H M, Gallagher P K, Berkstresser G W, et al. Journal of Mate-rials Research, 1990, 5(1), 183.
33 Birgeneau R J, Kjems J K, Shirane G, et al. Physical Review B, 1974, 10(6), 2512.
34 Kim C H, Cho S Y, Kim I T, et al. Materials Research Bulletin, 2001, 36(9),1561.
35 Feteira A, Sinclair D C, Lanagan M T. Journal of Applied Physics, 2007, 101(6),064110.
36 Kennedy B J, Howard C J, Prodjosantoso A K, et al. Applied Physics A Materials Science & Processing, 2002, 74(1), 1660.
37 Limarga A M, Shian S, Leckie R M, et al. Journal of the European Ceramic Society, 2014, 34(12), 3085.
38 Pitek F M, Levi C G. Surface and Coatings Technology, 2007, 201(12), 6044.
39 Shian S, Sarin P, Gurak M, et al. Acta Materialia, 2014, 69, 196.
40 Feng J, Shian S, Xiao B, et al. Physical Review B, 2014, 90(9), 094102.
41 Wu P, Chong X Y, Feng J. Journal of the American Ceramic Society, 2018, 101(5), 1818.
42 Wang J, Chong X Y, Zhou R, et al. Scripta Materialia, 2017, 126, 24.
43 Ebisu S, Morita H, Nagata S. Journal of Physics and Chemistry of Solids, 2000, 61(1), 45.
44 Zhou Q, Saines P J, Sharma N, et al. Chemistry of Materials, 2008, 20(21), 6666.
45 Doi Y, Harada Y, Hinatsu Y. Journal of Solid State Chemistry, 2009, 182(4), 709.
46 Yang J. Preparation and thermophysical properties of rare earth oxides thermal barrier coating ceramic materials. Ph.D. Thesis, Tsinghua University, China, 2017 (in Chinese).
杨军. 稀土氧化物热障涂层陶瓷材料的制备与热物理性能.博士学位论文, 清华大学, 2017.
47 Wu F S. An optimization study of thermal and mechanic properties of rare earth tantalum/niobium (RETa/NbO4). Master's Thesis, Kunming University of Technology, China, 2020 (in Chinese).
吴福硕. 稀土钽/铌酸盐(RETa/NbO4)陶瓷热学及力学性能的优化研究. 硕士学位论文,昆明理工大学, 2020.
48 Brixner L H, Whitney J F, Zumsteg F C, et al. Materials Research Bulletin, 1977, 12(1), 17.
49 Anan'eva G, Bakhshieva G, Karapetyan V, et al. Crystal growth and optical characteristics of lanthanian fergusonite, Springer, New York, US, 1975.
50 Jurkschat K, Sarin P, Siah L F, et al. Advances in X-ray Analysis, 2004, 47, 357.
51 Kriven W M, Sarin P, Siah L F. Solid-Solid Phase Transformations in Inorganic Materials, 2005, 2, 1015.
52 Gingerich K A, Bair H E. Advances in X-ray Analysis, 1963, 7, 22.
53 Stubičan V S. Journal of the American Ceramic Society, 1964, 47(2), 55.
54 Rooksby H, White E. Acta Crystallographica, 1963, 16(9), 888.
55 Komkov A I. Kristallografiya, 1959, 4(6), 836.
56 Guo R, Jiang Y, Bhalla A S, et al. In: Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics. East Brunswick, 1996, pp. 899.
57 Wood I G. Phase Transitions, A Multinational Journal, 1987, 9(3), 269.
58 Sarin P, Hughes R W, Lowry D R, et al. Journal of the American Cera-mic Society, 2014, 97(10), 3307.
59 Wang Y F, Xiao P. Materials Science & Engineering A, 2014, 604, 34.
60 Wang Y F, Yang H, Liu R J, et al. Ceramics International, DOI: 10.1016/j.ceramint.2017. 06.121.
61 Han J, Wang Y F, Liu R J, et al. Ceramics International, 2018, 44, 15954.
62 Wang Y F, Han J, Du J P, et al. Journal of the American Ceramic Society, DOI: 10.1111/jace.17687.
63 Taya M, Hayashi S, Kobayashi A S, et al. Journal of the American Ceramic Society, 1990, 73(5), 1382.
64 Hayashi H, Saitou T, Maruyama N, et al. Solid State Ionics, 2005, 176(5-6), 613.
65 Silva C, Miranda P D. International Journal of Hydrogen Energy, 2015, 40(32), 10002.
66 Stover D, Pracht G, Lehmann H, et al. Journal of Thermal Spray Technology, 2004, 13, 76.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[3] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[4] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[5] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[6] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[7] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[8] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[9] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[10] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[11] 宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
[12] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[13] 黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
[14] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[15] 郗晓倩, 张乐, 姚庆, 袁明星, 刘明源, 邵岑, 陈浩. 高技术陶瓷胶态成型技术及其产业应用[J]. 材料导报, 2022, 36(12): 20090063-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed