Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040204-6    https://doi.org/10.11896/cldb.22040204
  无机非金属及其复合材料 |
混杂纤维高强轻骨料混凝土单轴受压试验研究
崔涛涛, 宁宝宽*, 郜殿伟, 夏旭东
沈阳工业大学建筑与土木工程学院,沈阳 110870
Experimental Study on Hybrid Fiber High Strength Lightweight Aggregate Concrete Under Uniaxial Compression
CUI Taotao, NING Baokuan*, GAO Dianwei, XIA Xudong
School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 11798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善高强轻骨料混凝土(HSLC)的脆性破坏特征,采用钢纤维(SF)和聚丙烯纤维(PF)对HSLC进行增强,通过单轴受压试验研究两种纤维对HSLC单轴受压性能的影响。结果表明:SF和PF的体积掺量分别为2.0%和0.2%时具有最优的混杂效应,应力-应变曲线拐点处应力和收敛点处应变较单掺SF时分别提高了10.0%和56.5%,较单掺PF时分别提高了99.1%和150%;混杂纤维使HSLC的峰值应力、峰值应变和弹性模量最高分别提升了19.0%、1.20%和16.9%。最后,基于试验数据,提出了考虑两种纤维混杂效应的峰值应力、峰值应变和弹性模量的计算公式,建立了双参数混杂纤维增强HSLC的单轴受压本构模型,并且其与试验曲线吻合较好。该研究结果可为纤维增强HSLC的结构设计提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔涛涛
宁宝宽
郜殿伟
夏旭东
关键词:  混杂纤维  高强轻骨料混凝土  应力-应变曲线  混杂效应  本构模型    
Abstract: In order to improve the brittle failure characteristics of high strength lightweight aggregate concrete (HSLC), steel fiber (SF) and polypropy-lene fiber (PF) were used to strengthen HSLC. The effects of the two fibers on the uniaxial compression performance of HSLC were studied through uniaxial compression tests. The results show that when the volume content of SF and PF is 2.0% and 0.2%, respectively, there is the best hybrid effect. The stress at the inflection point and the strain at the convergence point of the stress-strain curve increased by 10.0% and 56.5% respectively compared with that of SF alone, and increased by 99.1% and 150% respectively compared with that of PF alone; the peak stress, peak strain and elastic modulus of HSLC increased by 19.0%, 1.20% and 16.9% respectively. Finally, based on the test data, the calculation formulas of peak stress, peak strain and elastic modulus considering the hybrid effect of two fibers are proposed, and the uniaxial compression constitutive model of hybrid fiber reinforced HSLC with two parameters is established, which is in good agreement with the test curve. The results can provide theoretical reference for the structural design of fiber reinforced HSLC.
Key words:  hybrid fiber    high strength lightweight aggregate concrete    stress-strain curve    hybrid effect    constitutive model
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 辽宁省重大专项(2020JH1/10300005)
通讯作者:  *宁宝宽,沈阳工业大学建筑与土木工程学院教授、博士研究生导师。1994年东北大学矿山建筑专业本科毕业,2006年东北大学结构工程专业博士毕业。目前主要从事固废建筑材料的制备、力学行为与服役性能,BIM与智能建造技术以及岩土工程等方面的研究。发表学术论文60余篇,其中被SCI、EI收录15篇,出版专著2部,获批专利5项、软件著作权2项。ningbk@126.com   
作者简介:  崔涛涛,2016年7月于大连交通大学获得工学学士学位。现为沈阳工业大学建筑与土木工程学院博士研究生。目前主要从事高强轻骨料混凝土相关的研究工作。
引用本文:    
崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
CUI Taotao, NING Baokuan, GAO Dianwei, XIA Xudong. Experimental Study on Hybrid Fiber High Strength Lightweight Aggregate Concrete Under Uniaxial Compression. Materials Reports, 2024, 38(2): 22040204-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040204  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22040204
1 Wu T, Yang X, Wei H, et al. Construction and Building Materials, 2019, 199, 526.
2 Hassanpour M, Shafigh P, Mahmoud B H. Construction and Building Materials, 2012, 37, 452.
3 Zhang G T, Cao Y L, Li R X, et al. Acta Materiae Compositae Sinca, 2020, 37(9), 2336 (in Chinese).
张广泰, 曹银龙, 李瑞祥, 等. 复合材料学报, 2020, 37(9), 2336.
4 Li J J, Wan C J, Niu J G, et al. Construction and Building Materials, 2017, 131, 449.
5 Zhao S B, Zhao M S, Zhang X Y, et al. Journal of Building Structures, 2019, 40(5), 181 (in Chinese).
赵顺波, 赵明爽, 张晓燕, 等. 建筑结构学报, 2019, 40(5), 181.
6 Ye Y X, Wang Z B, Peng Q W, et al. Journal of Building Materials, 2020, 23(4), 955 (in Chinese).
叶艳霞, 王宗彬, 彭琼武, 等. 建筑材料学报, 2020, 23(4), 955.
7 Wei H, Wu T, Yang X. Materials, 2020, 13(3), 1.
8 Saradhi Babu Daneti, Tiong-Huan Wee, Tamilselvan s/o Thangayah. Magazine of Concrete Research, 2011, 63(11), 871.
9 Liu X, Wu T, Yang X, et al. Construction and Building Materials, 2019, 226, 388.
10 Chen B, Liu J Y. Cement and Concrete Research, 2005, 35, 913.
11 Yap S P, Bu C H, Alengaram U J, et al. Materials and Design, 2014, 57, 652.
12 Libre N A, Shekarchi M, Mahoutian M, et al. Construction and Building Materials, 2011, 25(5), 2458.
13 Guo Z H, Zhang X Q, Zhang D C, et al. Journal of Building Structures, 1982, 3(1), 3 (in Chinese).
过镇海, 张秀琴, 张达成, 等. 建筑结构学报, 1982, 3(1), 3.
14 Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for design of concrete structures, GB 50010-2010. China Construction Industry Press, China, 2010(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构设计规范, GB 50010-2010. 中国建筑工业出版社, 2010.
15 Carreira D J, Chu K H. ACI Journal, 1985, 82(6), 797.
16 Al-hassani H M, Khalil W I, Danha L S. Journal of Babylon University (Engineering Sciences), 2015, 23(3), 591.
17 Cui T, He H X, Yan W M, Materials, 2019, 12(15), 1.
18 Zainal S, Hejazi F, Jaafar M S, et al. Crystals, 2020, 10(10), 1.
19 Xu L H, Li B, Chi Y, et al. Journal of Building Structures, 2018, 39(4), 140 (in Chinese).
徐礼华, 李彪, 池寅, 等. 建筑结构学报, 2018, 39(4), 140.
20 Chi Y, Xu L H, Yu H S, Composite Structures, 2014, 111, 497.
21 Caggiano A, Pepe M, Xargay H, et al. Polymers, 2020, 12(9), 1.
22 Domagala L. Journal of Civil Engineering and Management, 2011, 17(1), 36.
23 Wang C Q. Research of hybrid fiber reinforced cementitious composites with different size fibers. Ph. D. Thesis, Tongji University, China, 2003(in Chinese).
王成启. 不同几何尺寸纤维混杂增强水泥基复合材料的研究. 博士学位论文, 同济大学, 2003.
[1] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[2] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[3] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[4] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[5] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[6] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[7] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[8] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[9] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[10] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[11] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[12] 张苗, 田青, 屈孟娇, 祁帅, 姚田帅, 许鸽龙, 邓德华. 水泥乳化沥青砂浆应力-应变本构关系的研究[J]. 材料导报, 2022, 36(15): 21010104-5.
[13] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[14] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[15] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed