Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22050296-14    https://doi.org/10.11896/cldb.22050296
  无机非金属及其复合材料 |
钢筋混凝土环境中负载型阻锈剂的研究进展
徐宁1,2, 杨恒1,2,*, 熊传胜3, 崔征1,2,4, 蒋鹏1,2, 刘璨1,2
1 南京水利科学研究院,南京 210029
2 水文水资源与水利工程科学国家重点实验室,南京 210029
3 青岛理工大学土木工程学院,山东 青岛 266033
4 南京瑞迪高新技术有限公司,南京 210024
Research Progress of Carrier-loaded Corrosion Inhibitor in Reinforced-Concrete Environments
XU Ning1,2, YANG Heng1,2,*, XIONG Chuansheng3, CUI Zheng1,2,4, JIANG Peng1,2, LIU Can1,2
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China
3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
4 Nanjing R&D Hi-Tech Co., Ltd., Nanjing 210024, China
下载:  全 文 ( PDF ) ( 17222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 阻锈剂技术是抑制混凝土中钢筋锈蚀的重要途径,但传统阻锈剂的应用仍然面临功能单一、与混凝土的兼容性不佳、环保性和有效性难以兼顾等问题。将阻锈剂装载入载体中,以载体负载阻锈剂(Carrier-loaded corrosion inhibitor,CLCI)的形式将阻锈剂“间接”掺入混凝土,能够在避免阻锈剂原有缺陷的基础上,发挥载体的特有功能。本文围绕CLCI的离子固化、缓释效应、智能响应、pH自免疫系统、载体吸附效应等功能机制,结合CLCI对水泥基材料性能的影响,系统综述了CLCI的研究进展。最后,对其在混凝土中的研究和应用进行了展望,并提出了需要解决的问题,以期为CLCI在混凝土工程中的应用提供更多可能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐宁
杨恒
熊传胜
崔征
蒋鹏
刘璨
关键词:  负载型阻锈剂  钢筋混凝土腐蚀  智能响应  缓释  力学性能    
Abstract: Corrosion inhibitors provide an important way of protecting concrete steel bars from corrosion, and they have always been a research hotspot in the field of corrosion inhibition. However, the application of corrosion inhibitors still faces several problems, e.g., single performance, poor compatibility with cement-based materials, and difficulty in balancing environmental protection and effectiveness. A corrosion inhibitor is ‘indirectly’ mixed into concrete in the form of a carrier-loaded corrosion inhibitor (CLCI), which not only avoids the original defects of corrosion inhibitors, but it also plays the unique function of the carrier. In this paper, we systematically summarize the research progress of CLCIs in reinforced-concrete environments from the perspectives of the action mechanism of ion curing, slow-release, intelligent response, the pH autoimmune system, and the carrier adsorption effect and its influence on the properties of cement-based materials. Finally, research and application prospects of CLCI in concrete are detailed, and the problems to be solved are put forward to illuminate more possibilities for the application of CLCI in concrete engineering.
Key words:  carrier-loaded corrosion inhibitor    corrosion of reinforced-concrete    intelligent response    slow-release    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 江苏省自然科学基金(BK20230119);国家自然科学基金(51709253);中央级公益性科研院所基本科研业务费专项项目(Y422004)
通讯作者:  *杨恒,南京水利科学研究院材料结构研究所工程师,博士毕业于河海大学。主要从事钢筋混凝土腐蚀、负载型阻锈剂方面的研究,在Construction and Building Materials、Materials Letters、Progress in Organic Coatings等期刊发表SCI论文10余篇,主持中央级公益性科研院所基本科研业务费专项项目1项,参与国家杰出青年科学基金、国家自然科学基金面上项目及青年项目等在内的国家级科研项目3项。hengyang@nhri.cn   
作者简介:  徐宁,南京水利科学研究院材料结构研究所高级工程师,博士毕业于河海大学。江苏省“333高层次人才培养工程”中青年学术技术带头人。主持或部分主持包括国家重点研发项目、国家自然科学基金、科技支撑计划、交通部西部建设项目等在内的国家和省部级科研项目8项,负责完成10余项重大工程科研项目。主要从事钢筋阻锈剂、高性能混凝土、电化学修复技术等方面的研究。主/参编行业规范3部,发表论文20余篇,其中SCI/EI收录10余篇。
引用本文:    
徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
XU Ning, YANG Heng, XIONG Chuansheng, CUI Zheng, JIANG Peng, LIU Can. Research Progress of Carrier-loaded Corrosion Inhibitor in Reinforced-Concrete Environments. Materials Reports, 2024, 38(2): 22050296-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050296  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22050296
1 Etteyeb N, Dhouibi L, Takenouti H, et al. Cement and Concrete Compo-sites, 2016, 65(1), 94.
2 Etteyeb N, Dhouibi L, Takenouti H, et al. Cement and Concrete Compo-sites, 2015, 55(1), 241.
3 Djerbi A, Bonnet S, Khelidj A, et al. Cement and Concrete Research, 2008, 38(6), 877.
4 Song H W, Li C H, An K Y. Cement and Concrete Composites, 2008, 30(2), 113.
5 Vidal T, Castel A, Francois R. Cement and Concrete Research, 2007, 37(11), 1551.
6 Garces P, Saura P, Mendez A, et al. Corrosion Science, 2008, 50(2), 498.
7 Du R G. The effects of different inorganic corrosion inhibitors on the reinforcing steel in concrete. Ph. D. Thesis, Xiamen University, China, 2001(in Chinese).
杜归荣. 若干无机缓蚀剂对混凝土中钢筋的阻锈作用. 博士学位论文, 厦门大学, 2001.
8 Ormellese M, Berra M, Bolzoni F, et al. Cement and Concrete Research, 2006, 36(3), 536.
9 Jiang S B, Gao S, Jiang L H, et al. Cement and Concrete Composites, 2018, 91(8), 87.
10 Tian H W. Study on anti-corrosion performance and mechanism of environment-friendly reinforcing bar embroidery inhibitor. Ph. D. Thesis, Institute of Ocea-nology of the Chinese Academy of Sciences, China, 2012 (in Chinese).
田惠文. 环境友好型钢筋阻绣剂的防腐性能和机理研究. 博士学位论文, 中国科学院海洋研究所, 2012.
11 Xu J X, Wei J F, Ma G X, et al. Corrosion Science, 2020, 176(11), 108940.
12 Liu Y Q, Song Z J, Wang W Y, et al. Journal of Cleaner Production, 2019, 214(3), 298.
13 Cao Y H, Dong S G, Zheng D J, et al. Corrosion Science, 2017, 26(9), 166.
14 Zuo J D, Li H B, Zhan J, et al. Cement and Concrete Composites, 2020, 105(1), 103438.
15 Yang H, Li W H, Liu X Y, et al. Construction and Building Materials, 2019, 225(11), 90.
16 Zuo J D, Zhan J, Dong B Q, et al. Construction and Building Materials, 2017, 155(11), 323.
17 Yang H, Xiong C S, Liu X Y, et al. Construction and Building Mate-rials, 2021, 307, 124991.
18 Wang Y Y, Hu J, Ma Y W, et al. Construction and Building Materials, 2022, 317, 125946.
19 Da B, Chen Y, Yu H F, et al. Journal of Cleaner Production, 2022, 339, 130572.
20 Víctor O, Matías J, Alberto E. Langmuir, 2014, 30(7), 8408.
21 Anja, Olafsen, Sjstad, et al. European Journal of Inorganic Chemistry, 2015, 2015(10), 1775.
22 Suraj, Shiv, Charan, et al. The Journal of Physical Chemistry C, 2015, 119(11), 27695.
23 Taviot G C, Prevot V, Forano C, et al. Advanced Functional Materials, 2018, 27(7), 1703861.
24 Pang H, Zhao M, Zhao Q, et al. Nanoscale, 2017, 9(11), 15206.
25 Zubair M, Daud M, Mckay G, et al. Applied Clay Science, 2017, 143(7), 279.
26 Luo Y P. Synthesis and application af self-healing microcapsules. Ph. D. Thesis, South China University of Technology, China, 2011 (in Chinese).
罗永平. 自修复微胶囊的合成与应用研究. 博士学位论文, 华南理工大学, 2011.
27 Yow H N, Routh A F. Soft Matter, 2006, 2(11), 940.
28 Yu Z G. Research and application of corroded reinforced concrete structure and rust inhibitor. Ph. D. Thesis, Hunan University, China, 2004 (in Chinese).
余志钢. 锈蚀钢筋混凝土结构性能和钢筋阻锈剂性能的研究及应用. 博士学位论文, 湖南大学, 2004.
29 Maesen T. Cheminform, 2001, 137(12), 1.
30 Karapinar N. Journal of Hazardous Materials, 2009, 170(10), 1186.
31 Wu Z C, An Y, Wang Z W, et al. Journal of Hazardous Materials, 2008, 156(8), 317.
32 Layla E, Benedicte L, Habiba N, et al. Journal of Hazardous Materials, 2019, 364(2), 206.
33 Kovalevskiy N S, Lyulyukin M N, Selishchev D S, et al. Journal of Ha-zardous Materials, 2018, 358(9), 302.
34 Ferrer E L, Rollon A P, Mendoza H D, et al. Microporous and Mesoporous Materials, 2014, 188(4), 8.
35 Xu W T, Wei J X, Yang Z G, et al. Construction and Building Materials, 2020, 250(7), 118861.
36 Yang Z G. Preparation of loaded imidazoline laurate rust inhibitor and its protective performance on reinforced cement-based materials. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
杨振国. 负载型月桂酸咪唑啉阻锈剂的制备及其对钢筋增强水泥基材料防护性能的研究. 博士学位论文, 华南理工大学, 2018.
37 Arumugam R, Ramamurthy K. Magazine of Concrete Research, 1996, 48(1), 141.
38 Wang X Z. Study on engineering geological properties of coral reefs and feasibility of large project construction on nansha islands. Ph. D. Thesis, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China, 2008 (in Chinese).
王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究. 博士学位论文, 中国科学院武汉岩土力学研究所, 2008.
39 Da B, Yu H F, Ma H, et al. Construction and Building Materials, 2016, 123(10), 47.
40 Wu M X, Yang Y W. Advanced Materials, 2017, 29(23), 1606134.
41 Li S X, Wang K K, Shi Y J, et al. Advanced Functional Materials, 2016, 26, 2715.
42 Cao J, Guo C, Guo X, et al. Journal of Molecular Liquids, 2020, 311, 113277.
43 Zhou W Q, Wang L, Li F, et al. Advanced Functional Materials, 2017, 27(6), 1605465.
44 Jian R K, Lin X B, Liu Z Q, et al. Composites Part B, 2020, 200(11), 108349.
45 Zuo J D, Wu B, Luo C Y, et al. Corrosion Science, 2019, 152(5), 120.
46 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2015, 58(4), 105.
47 Cao Y H, Zheng D J, Luo J S, et al. Journal of the Electrochemical Society, 2019, 166(11), C3106.
48 Xu J X, Song Y B, Zhao Y H, et al. Applied Clay Science, 2018, 163(10), 129.
49 Xu J X, Tan Q P, Mei Y J. Corrosion Science, 2020, 163(2), 108221.
50 Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research, 2017, 100(10), 1.
51 Wei J F, Xu J X, Mei Y J, et al. Applied Clay Science, 2020, 187(3), 105495.
52 Shui Z H, Chen Y X, Guo W. Construction and Building Materials, 2015, 93(9), 1051.
53 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2014, 47(3), 87.
54 Tian Y W, Dong C F, Wang G, et al. Materials Letters, 2019, 236(2), 517.
55 Cao Y H, Zheng D J, Luo J S, et al. Journal of the Electrochemical Society, 2019, 166(1), C617.
56 Yang Z X, Polder R, Mol J, et al. Cement and Concrete Research, 2017, 100(10), 186.
57 Hu Y R, Li H H, Wang Q, et al. Construction and Building Materials, 2019, 229(12), 116921.
58 Yoon S, Moon J, Bae S, et al. Materials Chemistry and Physics, 2014, 145(3), 376.
59 Wu B, Zuo J D, Dong B Q, et al. Applied Clay Science, 2019, 180(11), 105181.
60 Ryu H S, Singh J K, Lee H S, et al. Construction and Building Materials, 2017, 133(2), 387.
61 Gu L, Ding J H, Yu H B. Progress in Chemistry, 2016, 28(5), 737 (in Chinese).
顾林, 丁纪恒, 余海斌. 化学进展, 2016, 28(5), 737.
62 Chen M Z, Wu F, Yu L W, et al. Crystengcomm, 2019, 21(9), 6790.
63 Xu J X, Song Y B, Tan Q P, et al. Journal of Materials Science, 2017, 52(10), 5908.
64 Javadian S, Yousefi A, Neshati J. Applied Surface Science, 2013, 285(12), 674.
65 Tian H W, Li W H, Cao W K, et al. Corrosion Science, 2013, 73(8), 281.
66 Tian H W, Li W H, Hou B R. Corrosion Science, 2011, 53(10), 3435.
67 Liu A, Tian H W, Ju X D, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104(9), 330.
68 Chen Z H, Yang W Z, Yin X S, et al. Progress in Organic Coatings, 2020, 146(9), 105750.
69 Jiang Y Q, Li J, Juan Y F, et al. Journal of Alloys and Compounds, 2019, 775, 1.
70 Anstice D J, Page C L, Page M M. Cement and Concrete Research, 2005, 35(2), 377.
71 Michel A, Nygaard P V, Geiker M R. Corrosion Science, 2013, 72(7), 26.
72 Kumar M P, Paulo J. M. M. Concrete:Microstructure, Properties, and Materials. China Architecture & Building Press, China, 2016, pp. 130 (in Chinese).
库马·梅塔, 保罗J. M. 蒙特罗. 混凝土微观结构、性能和材料, 中国建筑工业出版社, 2016, pp. 130.
73 Xu N, Jiang L H, Zhou H M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36 (6), 804.
74 Goh K H, Lim T T. Journal of Hazardous Materials, 2010, 180(1), 401.
75 Ping D, Chen W, Ma J, et al. Construction and Building Materials, 2013, 48(11), 601.
76 Duan Ping. Research on modification mechanism and the application of layered double hydroxides for durability of concrete. Ph. D. Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
段平. 层状双氢氧化物改善混凝土耐久性能的机理及其应用研究. 博士学位论文, 武汉理工大学, 2014.
77 Geng H N, Duan P, Chen W, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(3), 97.
78 Shui Z H, Yu R, Chen Y X, et al. Construction and Building Materials, 2018, 176(7), 228.
79 Parker L M, Milestone N B, Newman R H. Industrial & Engineering Chemistry Research, 1995, 34(4), 1196.
80 Ambrogi V, Fardella G, Grandolini G, et al. AAPS PharmSciTech, 2002, 3(3), 77.
81 Qi F L, Li S P, Zhang X Q. Acta Chimica Sinica, 2012, 70(20), 2162 (in Chinese).
齐凤林, 李淑萍, 张晓晴. 化学学报, 2012, 70(20), 2162.
82 Shkirskiy V, Keil P, Hintze-Bruening H, et al. ACS Applied Materials and Interfaces, 2015, 7(10), 25180.
83 Da B, Yu H F, Ma H Y, et al. Journal of Chinese Society for Corrosion and Protection, 2019, 39(4), 152 (in Chinese).
达波, 余红发, 麻海燕, 等. 中国腐蚀与防护学报, 2019, 39(4), 152.
84 Rojas R, Palena M C, Jimenez-Kairuz A F, et al. Applied Clay Science, 2012, 62(7), 15.
85 Tian H W, Li W H, Liu A, et al. Corrosion Science, 2018, 131(2), 1.
86 Zhu Y Y. Design and preparation of pH-sensitive organic micro-nano anticorrosion capsules and investigation on the related inhibition mechanism. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
朱洋洋. pH敏感型有机微纳阻锈胶囊的设计制备及阻锈机理的研究. 博士学位论文, 华南理工大学, 2018.
87 Zhu Y Y, Ma Y W, Yu Q J, et al. Materials and Design, 2017, 119(4), 254.
88 Hu J, Zhu Y Y, Hang J Z, et al. Construction and Building Materials, 2021, 267(1), 121011.
89 Dong B Q, Wang Y S, Fang G H, et al. Cement and Concrete Compo-sites, 2015, 56(2), 46.
90 Gomes C, Mir Z, Rui S, et al. Materials, 2020, 13(7), 1769.
91 Song Z J, Liu Y Q, Jiang L H, et al. Construction and Building Materials, 2021, 311, 125331.
92 Zhang Q, Feng P, Wang H C, et al. Materials Reports, 2022, 36(4), 1 (in Chinese).
张琪, 冯攀, 王浩川, 等. 材料导报, 2022, 36(4), 1.
93 Guo L S, Zhang Q Y, Han S X. Journal of Agricultural Safety and Health, 2002, 8(12), 385.
94 Hunter A J, Drinkwater B W, Wilcox P D. Ndt and E International, 2010, 43(3), 78.
95 Gromov A I, Osipov L, Yurkin Y Y, et al. Biomedical Engineering, 2015, 49(7), 120.
96 Zhang P, Zhang G G, Wang W. Bioresource Technology, 2007, 98(1), 207.
97 Ichikawa T, Natsu W. Procedia Cirp, 2013, 6(7), 326.
98 Sutcliffe M, Weston M, Dutton B, et al. Ndt & E International, 2012, 51(10), 16.
99 Xu N, Song Z J, Guo M Z, et al. Cement and Concrete Composites, 2021, 118(6), 103951.
100 Wang Y S, Fang G H, Ding W J, et al. Scientific Reports, 2015, 5(12), 18484.
101 Wang Y S, Ding W J, Fang G H, et al. Construction and Building Materials, 2016, 125(10), 742.
102 Liu A, Tian H W, Li W H, et al. Applied Surface Science, 2018, 462(12), 175.
103 Liu Ang. Construction and mechanism of hydrotalcite-based functional corrosion inhibitor-coating protection system. Ph. D. Thesis, Institute of Oceanology, Chinese Academy of Sciences, China, 2020 (in Chinese).
刘昂. 水滑石基功能化缓蚀-涂层防护体系构建和机制研究. 博士学位论文, 中国科学院海洋研究所, 2020.
104 Zhu Y X, Song G L, Wu P P. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2021.11.019.
105 Dou Z, Zhang Y, Shulha T. Surface and Coatings Technology, 2022, 439(6), 128414.
106 Zhan J. Preparation of polymer/rust inhibitor microcapsules by centrifugal-coating method and characterization of rust resistance. Master’s Thesis, Shenzhen University, China, 2017 (in Chinese).
詹嘉. 离心-包衣法制备聚合物/阻锈剂微胶囊及其阻锈性能的研究. 硕士学位论文, 深圳大学, 2017.
107 Yang Z, Fischer H, Cerezo J, et al. Construction and Building Materials, 2013, 47, 1436.
108 Gu Y. Modifying cementitious materials with core-shell nano-SiO2. Ph. D. Thesis, Southeast University, China, 2017 (in Chinese).
顾越. 核壳纳米SiO2改性水泥基材料性能研究. 博士学位论文, 东南大学, 2017.
109 Land G, Stephan D. Cement and Concrete Composites, 2015, 57(3), 64.
110 Booshehrian A, Hosseini P. Magazine of Concrete Research, 2011, 2(1), 167.
111 Makar J M, Chan G W. Journal of the American Ceramic Society, 2010, 92(6), 1303.
112 Bo Y L, Kurtis K E. Journal of the American Ceramic Society, 2010, 93(10), 3399.
113 Wu Y Y, Duan P, Yan C J. Applied Clay Science, 2018, 158(6), 123.
114 Guan X M, Li H Y, Luo S Q, et al. Cement and Concrete Composites, 2016, 70(7), 15.
115 Ke X Y, Bernal S A, Provis J. Green Materials, 2018, 10(7), 1.
116 Cao L, Guo J T, Tian J H, et al. Construction and Building Materials, 2018, 184(9), 203.
117 Liu C S, Wei S. Journal of Materials Science:Materials in Medicine, 1997, 8(12), 803.
118 Yang H, Xiong C S, Liu A, et al. Materials Letters, 2021, 300(10), 130228.
119 Zhutovsky S, Kovler K, Bentur A. Cement and Concrete Research, 2011, 41(9), 981.
120 Ghourchian S, Wyrzykowski M, Lura P, et al. Construction and Buil-ding Materials, 2013, 40(3), 135.
121 Jensen O M, Hansen P F. Cement and Concrete Research, 2002, 32(6), 973.
122 Parveen S, Rana S, Fangueiro R, et al. Cement and Concrete Research, 2015, 73(7), 215.
123 Li H Y, Xu C, Guan X M, Zhang H B, et al. Advances in Cement Research, 2018, 32(6), 1.
124 Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research, 2018, 105(3), 81.
125 Liu T, Chen Y, Yu Q, et al. Construction and Building Materials, 2020, 250, 118865.
[1] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[2] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[3] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[4] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[5] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[6] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[7] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[8] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[9] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[10] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[11] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[12] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[13] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[14] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[15] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed