Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080228-6    https://doi.org/10.11896/cldb.22080228
  金属与金属基复合材料 |
基于金属橡胶的轻质波纹型夹层结构静态力学性能
潘伶1,2, 许冰冰1,2, 任志英1,2,*, 史林炜1,2, 陈毅鹏1,2
1 福州大学机械工程及自动化学院,福州 350116
2 福州大学金属橡胶与振动噪声研究所,福州 350116
Static Mechanical Properties of Lightweight Corrugated Sandwich Structure Based on Metal Rubber
PAN Ling1,2, XU Bingbing1,2, REN Zhiying1,2,*, SHI Linwei1,2, CHEN Yipeng1,2
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2 Institute of Metal Rubber and Vibration and Noise, Fuzhou University, Fuzhou 350116, China
下载:  全 文 ( PDF ) ( 18345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用金属橡胶制备一种波纹夹芯板,通过试验和有限元分别研究结构的宏观及微观力学特性,为加快计算速率,构建有限元等效模型研究不同材料参数对结构力学性能的影响,并进行试验验证。结果表明,金属橡胶波纹夹芯板受载条件下会存在两个阶段:平台阶段与致密阶段,相较于传统波纹夹芯板,其平台阶段加长且吸能效果提高。结合试验和有限元发现导致这两个阶段的原因是,结构在受载条件下会存在极限载荷致使夹芯层屈曲变形从而使结构内部空隙减少,结构进一步受载达到致密阶段。通过两者的对比验证了研究结果的有效性,为金属橡胶波纹夹层板的未来设计和应用提供了指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘伶
许冰冰
任志英
史林炜
陈毅鹏
关键词:  金属橡胶  波纹夹芯板  力学特性  有限元    
Abstract: A corrugated sandwich plate was prepared by metal rubber, and the macro and micro mechanical properties of the structure were studied by experiment and finite element respectively. In order to accelerate the calculation rate, the finite element equivalent model was established, and the influence of different material parameters on the mechanical properties of the structure was studied and verified by experiment. The results show that there are two stages under load: platform stage and compact stage. Compared with traditional corrugated sandwich board, the platform stage is longer and the energy absorption effect is improved. Combined with the test and the finite element, it is found that the reason for these two stages is that the ultimate load can cause the buckling deformation of the sandwich layer under the loading condition, thus reducing the internal voidage of the structure, and the structure is further loaded to the dense stage. The validity of the research results is verified by the comparison of the two, which provides guidance for the future design and application of metal rubber corrugated sandwich plate.
Key words:  metal rubber    corrugated sandwich panel    mechanical property    finite element
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TB333  
基金资助: 国家自然科学基金(U2330202; 52175162; 51805086; 51975123)
通讯作者:  *任志英,福州大学机械工程及自动化学院教授、博士研究生导师,福州大学金属橡胶与振动噪声研究所常务副所长,福建省高层次B类人才。2003年福州大学机械制造及自动化专业本科毕业,2006年福州大学机械电子工程专业硕士毕业,2015年6月于福州大学获得博士学位。2006年至今加入福州大学机械学院车辆工程系,长期从事高端装备减振降噪技术研究,近五年主持国家自然科学基金、军科委创新特区、装备部预研项目以及各类省部级项目10余项。在AFM、Friction、Wear、MSSP、Composite Structures、《机械工程学报》等权威期刊作为第一或者通信作者发表SCI、EI等收录的学术论文近60篇;授权国家专利60多项,其中发明专利22项和软件著作4项。出版英文专著1章节,参编团标1项。renzyrose@126.com   
作者简介:  潘伶,福州大学机械工程及自动化学院教授、硕士研究生导师。1993年于福州大学获硕士学位;2015年于福州大学获博士学位。现为中国机械工程学会高级会员、福州大学摩擦学研究所所长和福州市摩擦与润滑行业技术创新中心主任。目前主要从事微纳摩擦材料研究、机械设备的流场模拟、有限元分析和结构优化等工作。发表论文40余篇,包括《机械工程学报》、Wear、Surface Topography、Nanomaterials、Fluid Phase Equilibria等。
引用本文:    
潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
PAN Ling, XU Bingbing, REN Zhiying, SHI Linwei, CHEN Yipeng. Static Mechanical Properties of Lightweight Corrugated Sandwich Structure Based on Metal Rubber. Materials Reports, 2024, 38(4): 22080228-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080228  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22080228
1 Yue C F, Wu S D. Torpedo Technology, 2007(4), 1(in Chinese).
岳灿甫, 吴始栋. 鱼雷技术, 2007(4), 1.
2 Zhou X Q. Unified Theory of plane sandwich plate and bending perfor-mance analysis of circular sandwich plate. Master’s Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
周雪清. 平面夹芯板统一理论及圆弧夹芯板抗弯性能分析. 硕士学位论文, 哈尔滨工业大学, 2015.
3 Rejab M, Cantwell W J. Composites Part B: Engineering, 2013, 47, 267.
4 Hou S J, Shu C F, Zhao S Y, et al. Composite Structures, 2015, 126, 371.
5 Zheng J L, Sun Y, Peng M J. Journal of Composite Materials, 2016, 33(2), 408(in Chinese).
郑吉良, 孙勇, 彭明军. 复合材料学报, 2016, 33(2), 408.
6 Hu K, Lin K J, Gu D D, et al. Materials Science and Engineering: A, 2019, 762, 138089.
7 Li Z J, Huang L, Zhao N, et al. Chinese Ship Research, 2020, 15(4), 53(in Chinese).
李政杰, 黄路, 赵南, 等. 中国舰船研究, 2020, 15(4), 53.
8 Qiang B, Liu Y J, Kan Q H. Journal of Materials Engineering, 2014(11), 97(in Chinese).
强斌, 刘宇杰, 阚前华. 材料工程, 2014(11), 97.
9 Shi S S, Chen B Z, Chen H R, et al. Journal of Composite Materials, 2017, 34(9), 1953(in Chinese).
石姗姗, 陈秉智, 陈浩然, 等. 复合材料学报, 2017, 34(9), 1953.
10 Meng L, Lan X Q, Zhao J, et al. Composite Structures, 2021, 263(1), 113724.
11 Zhao Z Y, Liu C, Sun L S, et al. Composite Structures, 2021, 277, 114604.
12 Song X D, Wang D, Jing C H. Hot Working Technology, 2022(10), 56(in Chinese).
宋绪丁, 王冬, 荆传贺. 热加工工艺, 2022(10), 56.
13 Xia Y W, Li X P, Yu P, et al. Materials, 2018, 11(9), 1714.
14 Li Y G, Zhang Y, Zhu L et al. Journal of Ship Mechanics, 2021, 25(5), 637(in Chinese).
李应刚, 张雨, 朱凌, 等. 船舶力学, 2021, 25(5), 637.
15 Chen J M, Zhu T, Xiao S N, et al. Journal of Mechanical Science and Technology, 2023, 42(3), 345(in Chinese).
陈佳明, 朱涛, 肖守讷, 等. 机械科学与技术, 2023, 42(3), 345.
16 Cheng S L, Wu L J, Sun S, et al. Journal of Composite Materials, 2022, 39(7), 3641(in Chinese).
程树良, 吴灵杰, 孙帅, 等. 复合材料学报, 2022, 39(7), 3641.
17 Cao Z L, Zhu H, Dong M J, et al. Journal of Composite Materials, 2023, 40(2), 1190(in Chinese).
曹忠亮, 朱昊, 董明军, 等. 复合材料学报, 2023, 40(2), 1190.
18 Chen P. Ship Science and Technology, 2016, 38(9), 24(in Chinese).
陈攀. 船舰科学技术, 2016, 38(9), 24.
19 Yao C, Hu Z F, Mo F, et al. Metals, 2019, 9(5), 582.
20 Roudbeneh F H, Liaghat G, Sabouri H, et al. Iranian Polymer Journal, 2020, 29(8), 707.
21 Cui A, Liu F F, Zhang H, et al. Automotive Engineering, 2019, 41(10), 1221(in Chinese).
崔岸, 刘芳芳, 张晗, 等. 汽车工程, 2019, 41(10), 1221.
22 Zhang D Y, Xia Y, Zhang Q C, et al. Journal of Aerospace Power, 2018, 33(6), 1432(in Chinese).
张大义, 夏颖, 张启成, 等. 航空动力学报, 2018, 33(6), 1432.
23 Wang Y J, Zhang Z J, Xue X M, et al. Thin-Walled Structures, 2020, 154, 106816.
24 Wang S S, Xue X, Bai H B, et al. Ordnance Materials Science and Engineering, 2020, 43(3), 114(in Chinese).
王珊珊, 薛新, 白鸿柏, 等. 兵器材料科学与工程, 2020, 43(3), 114.
25 Zheng X Y, Ren Z Y, Shen L L, et al. Materials, 2021, 14(1), 187.
26 Ren Z Y, Shen L L, Huang Z W, et al. IEEE Access, 2019, 7, 132694.
27 Ren Z Y, Shen L L, Bai H B, et al. Mechanical Systems and Signal Processing, 2021, 154, 107567.
[1] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[2] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[3] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[4] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[5] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[6] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[7] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[8] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[9] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[10] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[11] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[12] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[13] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[14] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[15] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed