Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050294-11    https://doi.org/10.11896/cldb.22050294
  金属与金属基复合材料 |
增材制造成形件中位错的研究进展
田根, 王文宇*, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜
陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
A Review of Dislocations in Additive Manufacturing Forming Parts
TIAN Gen, WANG Wenyu*, WANG Xiaoming, ZHAO Yang, HAN Guofeng, REN Zhiqiang, ZHU Sheng
National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 36165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造是通过逐层堆积的方法制造实体零件的一种革命性技术,其成形性能受成形工艺、微观结构、沉积路径等影响,其中,位错作为晶体微观结构中广泛存在的一种线缺陷,是决定金属性能的一个重要因素。为深层次理解增材制造性能影响的本质机制,需进一步了解增材制造成形件中的位错特点。本文基于近年来增材制造成形件中位错的研究成果,梳理了位错的起源、特征和密度,分析了位错对强度等性能的影响。与传统制造相比,增材制造成形过程中因固有的循环加热-冷却而造成的压缩-拉伸应力循环使得增材制造成形件中的位错具有独特的结构和性质。在塑性变形中,位错随应变变化明显,不同的初始位错影响成形件对应变的响应;增材制造成形件中测量的位错密度高于锻件或铸件,不同位置、不同形状的位错密度也存在一定的差异;位错强化是增材制造成形件中的主要强化作用,与此同时,在钢的成形件中,位错还可诱发马氏体相变,促使再结晶,另外还影响成形件的腐蚀、蠕变和氢脆等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田根
王文宇
王晓明
赵阳
韩国峰
任智强
朱胜
关键词:  增材制造  位错结构  位错特性  位错密度  位错强化    
Abstract: Additive manufacturing (AM) is a revolutionary technology to manufacture solid parts by layer-by-layer stacking. Dislocation, a kind of line defect widely existing in crystal microstructure, is an important factor in determining the properties of the formed parts. To further understand the characteristics of dislocations in parts formed by additive manufacturing and the essential mechanism of AM, the research achievements in the field over recent decades are summarized, with emphasis on the characteristics of dislocations, the densities of dislocations, and the effects of dislocations on the properties of the parts. Due to the compression-tensile stress cycle caused by cyclic heating and cooling in the forming process, AM-formed parts generally exhibit a high-density dislocation structure. The dislocation structure realizes its energy stability under cyclic action. The density and structure of dislocations in formed parts can be controlled by changing the heat input parameters during AM processing. The interactions among dislocations, microelements, phases, and different dislocations result in the accumulation of dislocations, dislocation loops, and dislocation tangles. The dislocation structure changes under heavy ion irradiation, which is of certain significance for the application of AM in the nuclear industry. The occurrence of dislocations reduces the elastic strain energy caused by lattice distortion, and the dislocation structure shows the mechanism of strain minimization in the solidification process. In the plastic deformation, the dislocations vary significantly with the strain. Different initial dislocations affect the response to the strain of the formed parts. Meanwhile, the initial dislocations induce martensitic transformation and promote recrystallization in the steel-formed parts, which in turn affect the mechanical properties. The dislocation density of the AM-formed parts is higher than that of the parts prepared by traditionally forged or cast methods. There are certain differences in dislocation density in various positions and shapes too. Additionally, different process parameters (such as heat treatment and aging treatment) also have an effect on the dislocation density, thus affecting the properties of the formed parts. Dislocation strengthening, as the main strengthening effect in AM-formed parts, endows them with the same mechanical properties as the forged parts. The unique dislocation structures generated by AM also affect the corrosion, creep, and hydrogen embrittlement of the formed parts.
Key words:  additive manufacturing    dislocation structure    dislocation features    dislocation density    dislocation strengthening
发布日期:  2024-01-16
ZTFLH:  TG156.2  
基金资助: 国家重点研究发展计划项目(2018YFB1105800)
通讯作者:  王文宇,陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2010 年毕业于北京化工大学,获得工学硕士学位,主要从事增材再制造领域的研究工作,发表论文30余篇。kaolawwy@qq.com   
作者简介:  田根,2014年9月、2022年12月于陆军装甲兵学院分别获得工学学士学位和工程硕士学位。现为陆军装甲兵学院装备保障与再制造系博士研究生,主要研究领域为金属增材制造技术。
引用本文:    
田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
TIAN Gen, WANG Wenyu, WANG Xiaoming, ZHAO Yang, HAN Guofeng, REN Zhiqiang, ZHU Sheng. A Review of Dislocations in Additive Manufacturing Forming Parts. Materials Reports, 2024, 38(1): 22050294-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050294  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22050294
1 Sun C, Wang Y, Mcmurtrey M D, et al. Applied Energy, 2021, 282, 18.
2 Yin Y, Tan Q Y, Bermingham M, et al. International Materials Reviews, 2022, 67(5), 487.
3 Liu Z Y, Zhao D D, Wang P, et al. Journal of Materials Science & Technology, 2022, 100, 224.
4 Bajaj P, Hariharan A, Kini A, et al. Materials Science and Enginee-ring A, 2020, 772, 138633.
5 Zhang Lihao, Qian Bo, Zhang Chaorui, et al. Materials Science and Technology, 2022, 30(1), 42(in Chinese).
张立浩, 钱波, 张朝瑞, 等. 材料科学与工艺, 2022, 30(1), 42.
6 Lin J J, Lv Y H, Guo D J, et al. Materials Science and Engineering A, 2019, 759, 288.
7 Rashed M G, Bhattacharyya D, Mines R A W, et al. Additive Manufacturing, 2021, 37, 101682.
8 Pan H J, He Y, Zhang X D. Materials, 2021, 14(4), 47.
9 Kacher J, Eftink B P, Cui B, et al. Current Opinion in Solid State and Materials Science, 2014, 18(4), 227.
10 Zhu C Y, Harrington T, Gray G T, et al. Acta Materialia, 2018, 155, 104.
11 Wang N, Chen Y N, Wu G, et al. Materials Science and Engineering A, 2022, 836, 142728.
12 Upadhyay M V. Journal of the Mechanics and Physics of Solids, 2020, 145, 104150.
13 Li Z, Cui Y N, Yan W T, et al. Materials Today, 2021, 50, 79.
14 Wang G, Ouyang H, Fan C, et al. Materials Research Letters, 2020, 8(8), 283.
15 Birnbaun A J, Steuben J C, Barrick E J, et al. Additive Manufacturing, 2019, 29, 100784.
16 Bertsch K M, De Bellefon G M, Kuehl B, et al. Acta Materialia, 2020, 199, 19.
17 Wang D, Huang J, Tan C, et al. Acta Metallurgica Sinica, 2022, 58(10), 1221(in Chinese).
王迪, 黄锦辉, 谭超林, 等. 金属学报, 2022, 58(10), 1221.
18 Gallmeyer T G, Moorthy S, Kappes B B, et al. Additive Manufacturing, 2020, 31, 100977.
19 Sprouster D J, Cunningham W S, Halada G P, et al. Additive Manufacturing, 2021, 47, 102263.
20 Prasad K, Obana M, Ito A, et al. Materials Characterization, 2021, 179, 111379.
21 Wei F X, Cheng B S, Kumar P, et al. Materials Science and Enginee-ring A, 2022, 833, 142546.
22 Yang J F, Liu X, Song M, et al. Additive Manufacturing, 2022, 50, 102547.
23 Song Kan, Yu Kai, Lin Xin, et al. Acta Metallurgica Sinica, 2015, 51(8), 935(in Chinese).
宋衎, 喻凯, 林鑫, 等. 金属学报, 2015, 51(8), 935.
24 Shang Z X, Fan C C, Ding J, et al. Journal of Nuclear Materials, 2021, 546, 152745.
25 Li S L, Hu J, Chen W Y, et al. Scripta Materialia, 2020, 178, 245.
26 Eftink B P, Weaver J S, Valdez J A, et al. Journal of Nuclear Materials, 2020, 531, 152007.
27 Huan D, Li Y, Chen X D, et al. Metals, 2020, 10(9), 12.
28 Zhou Y H, Li W P, Wang D W, et al. Acta Materialia, 2019, 173, 117.
29 Wang J B, Zhou X L, Li J H, et al. Additive Manufacturing, 2020, 31, 100921.
30 Small K A, Clayburn Z, Demott R, et al. Materials Science and Engineering A, 2020, 785, 139380.
31 Yin H S, Song M, Deng P, et al. Additive Manufacturing, 2021, 41, 101981.
32 Wu M, Hu Z, Qin X. Metals, 2022, 12(9), 1434.
33 Zhang X X, Lutz A, Andra H, et al. Journal of Alloys and Compounds, 2022, 898, 162890.
34 Zhang X X, Andra H, Harjo S, et al. Materials & Design, 2021, 198, 109339.
35 Zhang X X, Knoop D, Andra H, et al. International Journal of Plasticity, 2021, 140, 102972.
36 Yao Y, Xing C, Peng H, et al. Materials Science and Engineering A, 2021, 802, 140629.
37 Yamanaka K, Kuroda A, Ito M, et al. Additive Manufacturing, 2021, 37, 101678.
38 Ni X Q, Kong D C, Wu W H, et al. Materials Letters, 2021, 302, 130377.
39 Xu X F, Ganguly S, Ding J L, et al. Materials Science and Engineering A, 2019, 747, 111.
40 Liu L F, Ding Q Q, Zhong Y, et al. Materials Today, 2018, 21(4), 354.
41 Park J M, Asghari-Rad P, Zargaran A, et al. Acta Materialia, 2021, 221, 117426.
42 Lin D Y, Xu L Y, Jing H Y, et al. Additive Manufacturing, 2020, 36, 101591.
43 Luo X, Li D D, Yang C, et al. Additive Manufacturing, 2022, 51, 102640.
44 Yan Z, Zou K, Cheng M P, et al. Journal of Materials Research and Technology, 2021, 15, 582.
45 Borbely A, Groma I. Applied Physics Letters, 2001, 79(12), 1772.
46 Cui L Q, Yu C H, Jiang S, et al. Journal of Materials Science & Techno-logy, 2022, 96, 295.
47 Godec M, Zaefferer S, Podgornik B, et al. Materials Characterization, 2020, 160, 110074.
48 Guan S, Wan D, Solberg K, et al. Materials Science and Engineering A, 2019, 761, 138056.
49 Zhong W C, Sridharan N, Isheim D, et al. Journal of Nuclear Materials, 2021, 545, 152742.
50 Hamid M, Saleh M S, Afrouzian A, et al. Additive Manufacturing, 2021, 38, 101833.
51 Lin D Y, Xu L Y, Li X J, et al. Additive Manufacturing, 2020, 35, 101340.
52 Bond D M, Zikry M A. Additive Manufacturing, 2020, 32, 101059.
53 Li J, Yi M, Wu H Y, et al. Materials Science and Engineering A, 2020, 790, 139736.
54 Li M M, Zhang X, Chen W Y, et al. Journal of Nuclear Materials, 2021, 548, 152847.
55 Xu J H, Gruber H, Deng D Y, et al. Acta Materialia, 2019, 179, 142.
56 Bertsch K M, Nagao A, Rankouhi B, et al. Corrosion Science, 2021, 192, 109790.
[1] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[5] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[6] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[7] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[8] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[9] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[10] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[11] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[12] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[13] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[14] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[15] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed