摘要 随着航空航天工业的快速发展,人们对高性能耐热铝合金的需求逐渐增加。为了实现复杂构件的一体化成型,激光粉末床熔融(Laser powder bed fusion,L-PBF)增材制造技术成为目前的研究热点。相比传统铸造成型,采用激光粉末床熔融增材制造的构件具有更优异的综合性能。目前,对L-PBF增材制造传统高强韧铝合金已开展较为深入的研究,而针对耐热铝合金的研究还处于起步阶段。本综述首先介绍了激光粉末床熔融增材制造技术的特点,随后总结了近年来针对耐热铝合金体系及相应高温性能的研究,对目前存在的问题与难点进行了概括,最后对未来的主要研究方向进行了展望。
Abstract: With the rapid development of the aerospace industry, the demand for high-performance heat-resistant aluminum alloys will continue to increase in the future. In order to realize the one-step molding of complex components, laser powder bed fusion (L-PBF) additive manufacturing technology has become a hot research topic. The building parts manufactured by L-PBF additive manufacturing have a better overall performance than conventional casting manufacturing. At present, the researches on room-temperature high strength-ductility aluminum alloys are relatively comprehensive, but the researches on heat-resistant aluminum alloys are still in the initial stage. This review firstly introduces the L-PBF additive manufacturing technology, then summarizes the research on heat-resistant aluminum alloy systems and corresponding high-temperature properties in recent years, presents a brief overview of the current problems and challenges, finally looks forward to the main research interests in the future.
1 Bonnín Roca J, Vaishnav P, Fuchs E R H, et al. Nature Materials, 2016, 15(8), 815. 2 Wang J, Zhu R, Liu Y, et al. Advanced Powder Materials, 2023, 2(4), 100137. 3 Yang Qiang, Lu Zhongliang, Huang Fuxiang, et al. Aeronautical Manufacturing Technology, 2016(12), 6 (in Chinese). 杨强, 鲁中良, 黄福享, 等. 航空制造技术, 2016(12), 6. 4 Pollock T M. Nature Materials, 2016, 15(8), 809. 5 Zhang Anfeng, Li Dichen, Liang Shaoduan, et al. Aeronautical Manufacturing Technology, 2016(22), 7 (in Chinese). 张安峰, 李涤尘, 梁少端, 等. 航空制造技术, 2016(22), 7. 6 Shi Y, Gong S, Xu H, et al. Journal of Materials Research and Technology, 2023, 27, 6225. 7 Dharmalingam G, Baskar R, Arun Prasad M, et al. Materials Today, Proceedings, 2022, 68, 1891. 8 Wawrzyniak N, Provencher P R, Brochu M, et al. Materials Characterization, 2023, 203, 113117. 9 Zhang J, Song B, Wei Q, et al. Journal of Materials Science & Technology, 2019, 35(2), 270. 10 Zhao Xiaoming, Qi Yuanhao, Yu Quancheng, et al. Foundry Technology, 2016, 37(11), 3(in Chinese). 赵晓明, 齐元昊, 于全成, 等. 铸造技术, 2016, 37(11), 3. 11 Sun J E, Gao L, Liu Q, et al. Materials Science and Engineering: A, 2023, 872, 145003. 12 Li D, Wu Y, Geng Z, et al. Journal of Alloys and Compounds, 2023, 939, 168722. 13 Zhu Z, Ng F L, Seet H L, et al. Materials Today, 2022, 52, 90. 14 Zhou S Y, Su Y, Wang H, et al. Additive Manufacturing, 2020, 36, 101458. 15 Sun T, Chen J, Wu Y, et al. Materials Science and Engineering: A, 2022, 850, 143531. 16 Chen Jinlong. Research on compositon design and microstructure properties of new heat resistant aluminum alloy. Master’s Thesis, Southeast University, China, 2020 (in Chinese). 陈金龙. 新型耐热铝合金成分设计及组织性能研究. 硕士学位论文, 东南大学, 2020. 17 Ma Li, Zhao He, Zan Ningning, et al. Materials Reports, 2021, 35(S1), 414(in Chinese). 马力, 赵赫, 昝宇宁, 等. 材料导报, 2021, 35(S1), 414. 18 Zhang Qi. Nonferrous Metals Processing, 2021, 50(1), 1(in Chinese). 张琪. 有色金属加工, 2021, 50(1), 1. 19 Liu Yingying, Zheng Lijing, Zhang Hu. Journal of Materials Engineering, 2015, 43(11), 7 (in Chinese). 刘莹莹, 郑立静, 张虎. 材料工程, 2015, 43(11), 7. 20 Qin Yanli, Sun Bohui, Zhang Hao, et al. Chinese Journal of Lasers, DOI:10. 3788/CJL202148. 1402002(in Chinese). 秦艳利, 孙博慧, 张昊, 等. 中国激光, DOI:10. 3788/CJL202148. 1402002. 21 Li S S, Yue X, Li Q Y, et al. Journal of Materials Research and Technology, 2023, 27, 944. 22 Li Peiyong. Aeronautical Manufacturing Technology, 2020, 63(7), 16(in Chinese). 李沛勇. 航空制造技术, 2020, 63(7), 16. 23 Knipling K E, Dunand D C, Seidman D N. Ztschrift Fur Metallkunde, 2006, 97(3), 246. 24 De Araujo A P M, Kiminami C S, Uhlenwinkel V, et al. Materials Science and Engineering:A, 2023, 886, 145670. 25 Xu J Y, Zhang C, Liu L X, et al. Journal of Materials Science & Technology, 2023, 137, 56. 26 Wang W, Takata N, Suzuki A, et al. Crystals, 2021, 11(3), 320. 27 De Araujo A P M, Pauly S, Batalha R L, et al. Additive Manufacturing, 2021, 41, 101960. 28 Wang W, Takata N, Suzuki A, et al. Additive Manufacturing, 2023, 68, 103524. 29 Plotkowski A, Sisco K, Bahl S, et al. Acta Materialia, 2020, 196, 595. 30 Deng J, Chen C, Liu X, et al. Scripta Materialia, 2021, 203, 114034. 31 Ding R, Deng J, Liu X, et al. Journal of Alloys and Compounds, 2023, 934, 167894. 32 Bahl S, Plotkowski A, Sisco K, et al. Acta Materialia, 2021, 220, 117285. 33 Fang Z C, Wu Z L, Huang C G, et al. Optics & Laser Technology, 2020, 129, 106283. 34 Sun S B, Zheng L J, Liu J H, et al. Rare Metals, 2023, 42 (4), 1353. 35 Azarmi F, Sevostianov I. Current Opinion in Chemical Engineering, 2020, 28, 21. 36 Kang N, Fu Y, Coddet P, et al. Materials & Design, 2017, 132, 105. 37 Li W, Qian F, Li J, et al. Additive Manufacturing, 2023, 68, 103513. 38 Li G, Tunca B, Senol S, et al. Additive Manufacturing, 2023, 66, 103460. 39 Li G, Huang Y, Li X, et al. Additive Manufacturing, 2022, 60, 103296. 40 Bi J, Wu L, Liu Z, et al. Journal of Materials Science & Technology, 2024, 178, 59. 41 Pérez-Prado M T, Martin A, Shi D F, et al. Additive Manufacturing, 2022, 55, 102828. 42 Gao Yihan, Liu Gang, Sun Jun. Acta Metallurgica Sinica, 2021, 57(2), 129(in Chinese). 高一涵, 刘刚, 孙军. 金属学报, 2021, 57(2), 129. 43 Bi J, Lei Z, Chen Y, et al. Journal of Materials Science & Technology, 2021, 69, 200. 44 Yan Y, Lu C, Chen Z, et al. Metals, 2023, 13(4), 788.