Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23100241-14    https://doi.org/10.11896/cldb.23100241
  无机非金属及其复合材料 |
金刚石单晶中的位错及其对器件影响的研究进展
韩赛斌1,2, 胡秀飞1,2, 王英楠1,2, 王子昂1,2, 张晓宇1,2, 彭燕1,2,*, 葛磊1,2, 徐明升1,2, 徐现刚1,2,*, 冯志红3,4,*
1 山东大学新一代半导体材料研究院,济南 250100
2 山东大学晶体材料国家重点实验室,济南 250100
3 专用集成电路国家级重点实验室,石家庄 050051
4 中国电子科技集团公司第十三研究所,石家庄 050051
Research Progress of Dislocations in Diamond Single Crystals and Their Effects on Devices
HAN Saibin1,2, HU Xiufei1,2, WANG Yingnan1,2, WANG Ziang1,2, ZHANG Xiaoyu1,2, PENG Yan1,2,*, GE Lei1,2, XU Mingsheng1,2, XU Xiangang1,2,*, FENG Zhihong3,4,*
1 Institute of Novel Semiconductors,Shandong University,Jinan 250100,China
2 State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China
3 National Key Laboratory of Application Specific Integrated Circuit,Shijiazhuang 050051,China
4 The 13th Research Institute,China Electronics Technology Group Corporation,Shijiazhuang 050051,China
下载:  全 文 ( PDF ) ( 6754KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金刚石是超宽禁带半导体材料的代表之一,具有禁带宽度大、热导率高、载流子迁移率高、电子饱和漂移速度快、抗辐射性能好等优异性质,在功率器件、量子信息、辐射探测等高科技领域的应用越来越广泛。然而,与其他成熟的半导体材料如Si的零位错、SiC的螺位错(TSD)低于102 cm-2相比,金刚石单晶的位错密度处于103~108 cm-2,这是其器件性能未能充分发挥的原因之一。研究位错机理和降低位错也是现阶段金刚石研究的热点之一。本文汇总分析了金刚石单晶中位错的主要类型和位错产生原因,重点讨论了金刚石位错的表征技术、位错密度降低方法以及位错的存在对不同器件性能的影响,最后总结了金刚石当前所面临的机遇和挑战,并展望了金刚石未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩赛斌
胡秀飞
王英楠
王子昂
张晓宇
彭燕
葛磊
徐明升
徐现刚
冯志红
关键词:  金刚石  位错  位错检测技术  位错密度降低方法  缺陷    
Abstract: Diamond is one of well-known ultra-wide band gap semiconductor materials.It has excellent properties such as wide band gap,high thermal conductivity,high carrier mobility,high electron saturation drift velocity,and good radiation resistance.The progresses of diamond technology in recent decades has opened doors for the application for high-tech fields such as power devices,quantum information,and radiation detection.However,compared with other mature semiconductor materials such as Si with zero dislocation and SiC which TSD dislocation less than 102 cm-2,the dislocation density of diamond single crystal is in the range of 103—108 cm-2,that lead to its performance far lower than the theoretical value.Nowadays the dislocation mechanism and reducing dislocation is of acute interest.In this paper,the main types of dislocations in diamond single crystals and the induced causes of dislocations are introduced.The characterization methods of diamond dislocations,the approaches of reducing dislocation density and the influence of dislocations on the performance of different devices are discussed.Finally,the opportunities and challenges faced by diamond are summarized,and the future development of diamond is prospected.
Key words:  diamond    dislocation    dislocation detection technology    dislocation density reduction method    defect
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  O77+2  
基金资助: 山东省重点研发计划(2022CXGC010103;2022ZLGX02);国家自然科学基金(62004118);脉冲功率激光技术国家重点实验室开放基金项目(SKL2021KF08); 晶体材料国家重点实验室自主课题;国防科技重点实验室基金项目
通讯作者:  * 彭燕,山东大学新一代半导体材料研究院研究员、博士研究生导师。2011年6月毕业于山东大学,获得凝聚态物理博士学位。目前主要从事宽禁带/超宽禁带半导体材料和器件研究工作,重点研究SiC、金刚石材料及器件的制备、表征及应用。先后主持和参与国家重点研发计划、973、核高基及国家自然科学基金项目等10余项,共计发表论文70篇,第一作者/通信作者27篇;申请专利39项,授权21项。pengyan@sdu.edu.cn
徐现刚,山东大学新一代半导体材料研究院教授、博士研究生导师。1992年获得山东大学凝聚态物理博士学位。2000年留美回国至今,获教育部长江计划的特聘教授,2000年度国家杰出青年科学基金获得者,973首席科学家,主要从事半导体材料、纳米材料及其器件应用的研究,在国内外发表论文400余篇,被引4 000余次,获国家授权发明专利100余项。xxu@sdu.edu.cn
冯志红,研究员,博士研究生导师。博士毕业于香港科技大学电机与电子工程系,现任河北半导体所专用集成电路国家级重点实验室常务副主任、副总工程师,中国电子科技集团公司首席专家,国际电工委员会(IEC)专家。发表SCI/EI论文共计100余篇。研究方向涉及宽禁带半导体GaN、石墨烯、金刚石和固态太赫兹等技术领域。ga917vv@163.com   
作者简介:  韩赛斌,2022年6月毕业于青岛科技大学,获得工学学士学位。现为山东大学新一代半导体材料研究院硕士研究生,在彭燕研究员和徐现刚教授的指导下进行研究。目前主要研究领域为宽禁带半导体材料的生长。
引用本文:    
韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
HAN Saibin, HU Xiufei, WANG Yingnan, WANG Ziang, ZHANG Xiaoyu, PENG Yan, GE Lei, XU Mingsheng, XU Xiangang, FENG Zhihong. Research Progress of Dislocations in Diamond Single Crystals and Their Effects on Devices. Materials Reports, 2024, 38(20): 23100241-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100241  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23100241
1 Cai Y, Gao F, Chen H, et al. Optics Communications, 2023, 528, 128985.
2 Donato N, Rouger N, Pernot J, et al. Journal of Physics D:Applied Physics, 2020, 53(9), 093001.
3 Sanders N, Kioupakis E. Applied Physics Letters, 2021, 119(6), 062101.
4 Xiong J, Liu L, Song H, et al. Diamond and Related Materials, 2022, 130, 109403.
5 Zhi T, Tao T, Liu B, et al. Diamond and Related Materials, 2021, 119, 108605.
6 Guo H X, Li Y Z, Yu X X, et al. Micromachines, 2022, 13(9), 1486.
7 Li Y, Zheng Z X, Zhang C, et al. Semiconductor Science and Technology, 2021, 36(10), 105001.
8 Wang Y N, Hu X F, Ge L, et al. Crystals, 2023, 13(3), 500.
9 Childress L, Hanson R. MRS Bulletin, 2013, 38(2), 134.
10 Wrachtrup J, Jelezko F. Journal of Physics Condensed Matter, 2006, 18(21), S807.
11 Wrachtrup J, Kilin S Y, Nizovtsev A P. Optics and Spectroscopy, 2001, 91(3), 429.
12 Anderlini L, Bellini M, Cindro V, et al. Sensors, 2022, 22(22), 8722.
13 Bäni L, Alexopoulos A, Artuso M, et al. Journal of Physics D:Applied Physics, 2019, 52(46), 465103.
14 Su K, Wang H, He Q, et al. IEEE Electron Device Letters, 2022, 43(3), 454.
15 Hudgins J L, Simin G S, Santi E, et al. IEEE Transactions on Power Electronics, 2003, 18(3), 907.
16 Kim S W, Takaya R, Hirano S, et al. Applied Physics Express, 2021, 14(11), 115501.
17 Deng F, Chen X, Huang L, et al. Journal of Crystal Growth, 2023, 618, 127217.
18 Li C M, Ren F T, Shao S W, et al. Journal of Synthetic Crystals, 2022, 51(5), 759(in Chinese).
李成明, 任飞桐, 邵思武, 等. 人工晶体学报, 2022, 51(5), 759.
19 Achard J, Tallaire A, Mille V, et al. Physica Status Solidi (A) Applications and Materials Science, 2014, 211(10), 2264.
20 Naamoun M, Tallaire A, Silva F, et al. Physica Status Solidi (A):Applications and Materials Science, 2012, 209(9), 1715.
21 Achard J, Silva F, Brinza O, et al. Physica Status Solidi (A):Applications and Materials Science, 2009, 206(9), 1949.
22 Tallaire A, Brinza O, Mille V, et al. Advanced Materials, 2017, 29(16), 1604823.
23 Tsubouchi N. Applied Physics Letters, 2020, 117(22), 222103,.
24 Schreck M, Ščajev P, Träger M, et al. Journal of Applied Physics, 2020, 127(12), 125102.
25 Aharonovich I, Neu E. Advanced Optical Materials, 2014, 2(10), 911.
26 Berhane A M, Choi S, Kato H, et al. Applied Physics Letters, 2015, 106(17), 171102.
27 Kawai S, Yamano H, Sonoda T, et al. Journal of Physical Chemistry C, 2019, 123(6), 3594.
28 Ichikawa K, Koizumi S, Teraji T. Journal of Applied Physics, 2022, 132(2), 025302.
29 Turner S, Idrissi H, Sartori A F, et al. Nanoscale, 2016, 8(4), 2212.
30 Ichikawa K, Shimaoka T, Kato Y, et al. Journal of Applied Physics, 2020, 128(15), 155302.
31 Fujita N, Blumenau A T, Jones R, et al. Physica Status Solidi (A):Applications and Materials Science, 2006, 203(12), 3070.
32 Fujita N, Blumenau A T, Jones R, et al. Physica Status Solidi (A):Applications and Materials Science, 2007, 204(7), 2211.
33 Umezawa H, Kato Y, Watanabe H, et al. Diamond and Related Materials, 2011, 20(4), 523.
34 Kato Y, Umezawa H, Yamaguchi H, et al. Japanese Journal of Applied Physics, 2012, 51(9), 090103.
35 Han X, Peng Y, Wang X, et al. Journal of Electronic Materials, 2022, 51(9), 4995.
36 Ichikawa K, Kodama H, Suzuki K, et al. Thin Solid Films, 2016, 600, 142.
37 Issaoui R, Tallaire A, Mrad A, et al. Physica Status Solidi (A):Applications and Materials Science, 2019, 216(21), 1900581.
38 Mu L, Su K, Hu T, et al. Diamond and Related Materials, 2022, 130, 109527.
39 Tallaire A, Mille V, Brinza O, et al. Diamond and Related Materials, 2017, 77, 146.
40 Alegre M P, Araujo D, Fiori A, et al. Applied Physics Letters, 2014, 105(17), 1715.
41 Gonzalez-Manas M, Vallejo B. Journal of Applied Crystallography, 2018, 51, 1684.
42 Ivanov O A, Muchnikov A B, Chernov V V, et al. Materials Letters, 2015, 151, 115.
43 Tsubouchi N, Diamond and Related Materials, 2017, 78, 44.
44 Willems B, Martineau P M, Fisher D, et al. Physica Status Solidi (A) Applications and Materials Science, 2006, 203(12), 3076.
45 Gaukroger M P, Martineau P M, Crowder M J, et al. Diamond and Related Materials, 2008, 17(3), 262.
46 Shikata S, Miyajima K, Akashi N. Diamond and Related Materials, 2021, 118, 108502.
47 Crisci A, Baillet F, Mermoux M, et al. Physica Status Solidi (A):Applications and Materials Science, 2011, 208(9), 2038.
48 Honbu T, Takeuchi D, Ichikawa K, et al. Diamond and Related Materials, 2021, 117, 108463.
49 Hoa L T M, Ouisse T, Chaussende D, et al. Crystal Growth & Design, 2014, 14(11), 5761.
50 Kono S, Teraji T, Kodama H, et al. Diamond and Related Materials, 2015, 59, 54.
51 Tsubouchi N, Mokuno Y, Shikata S. Diamond and Related Materials, 2016, 63, 43.
52 Xu J M. Investigation on H-terminated diamond:electrical conduction and FETs’ performance. Master’s Thesis, Xidian University, China, 2020 (in Chinese).
徐佳敏. 氢终端金刚石电导及场效应管特性研究. 硕士学位论文, 西安电子科技大学, 2020.
53 Khokhryakov A F, Palyanov Y N, Kupriyanov I N, et al. Journal of Crystal Growth, 2011, 317(1), 32.
54 Kato Y, Umezawa H, Yamaguchi H, et al. Diamond and Related Materials, 2012, 29, 37.
55 Tsubouchi N, Mokuno Y. Journal of Crystal Growth, 2016, 455, 71.
56 Chen P C, Miao W C, Ahmed T, et al. Nanoscale Research Letters, 2022, 17(1), 30.
57 Tallaire A, Barjon J, Brinza O, et al. Diamond and Related Materials, 2011, 20(7), 875.
58 Naamoun M, Tallaire A, Doppelt P, et al. Diamond and Related Materials, 2015, 58, 62.
59 Stoupin S, Antipov S, Butler J E, et al. Journal of Synchrotron Radiation, 2016, 23(5), 1118.
60 Zhao Y, Guo Y Z, Lin L Z, et al. Journal of Crystal Growth, 2018, 491, 89.
61 Kowalski G, Moore M, Gledhill G, et al. Diamond and Related Materials, 1996, 5(11), 1254.
62 Masuya S, Kasu M. Diamond and Related Materials, 2018, 90, 40.
63 Burns R C, Chumakov A I, Connell S H, et al. Journal of Physics:Condensed Matter, 2009, 21(36), 364224.
64 Pinto H, Jones R. Journal of Physics:Condensed Matter, 2009, 21(36), 364220.
65 Zhao Y, Guo Y Z, Lin L Z, et al. Crystal Research and Technology, 2018, 53(7), 1800055.
66 Surovtsev N V, Kupriyanov I N. Crystals, 2017, 7(8), 239.
67 Kato Y, Umezawa H, Shikata S, et al. Diamond and Related Materials, 2012, 23, 109.
68 Araujo D, Bustarret E, Tajani A, et al. Physica Status Solidi (A):Applications and Materials Science, 2010, 207(9), 2023.
69 Tatsumi N, Tamasaku K, Ito T, et al. Journal of Crystal Growth, 2017, 458, 27.
70 Wang W H, Wang Y, Shu G Y, et al. New Carbon Materials, 2021, 36(6), 1034.
71 Wang R Z, Lin F, Niu G, et al. Materials, 2022, 15(2), 444.
72 Shikata S, Matsuyama Y, Japanese Journal of Applied Physics, 2019, 58(4), 045503.
73 Suzuki K, Iwai M, Uematsu T, et al. Key Engineering Materials, 2003, 238-239, 235.
74 Yamada H, Chayahara A, Mokuno Y, et al. Diamond and Related Materials, 2011, 20(4), 616.
75 Yamamura K, Emori K, Sun R, et al. Cirp Annals-Manufacturing Technology, 2018, 67(1), 353.
76 Brecher C, Emonts M, Hermani J P, et al. Physics Procedia, 2014, 56, 1107.
77 Heidrich S, Willenborg E, Weingarten C, et al. Materialwissenschaft und Werkstofftechnik, 2015, 46(7), 668.
78 Liu N, Sugimoto K, Yoshitaka N, et al. Ceramics International, 2023, 49(11), 19109.
79 Yuan Z W, Jin Z J, Dong B X, et al. Advanced Materials Research, 2008, 53, 111.
80 Martineau P M, Gaukroger M P, Guy K B, et al. Journal of Physics:Condensed Matter, 2009, 21(36), 364205.
81 Mokuno Y, Kato Y, Tsubouchi N, et al. Applied Physics Letters, 2014, 104(25), 252109.
82 Kubota A, Nagae S, Motoyama S. Diamond and Related Materials, 2020, 101, 107644.
83 Liu N, Yamada H, Yoshitaka N, et al. Diamond and Related Materials, 2021, 119, 108555.
84 Silva F, Achard J, Brinza O, et al. Diamond and Related Materials, 2009, 18(5), 683.
85 Hu W X, Chen K, Tao T, et al. Thin Solid Films, 2022, 763, 139571.
86 Tallaire A, Achard J, Silva F, et al. Physica Status Solidi (A):Applied Applications and Materials Science, 2004, 201(11), 2419.
87 Kamikawa T, Kobayashi T, Aoki Y, et al. Crystal Growth & Design, 2023, 23(7), 4855.
88 Suwannaharn N, Sanorpim S, Yordsri V, et al. Journal of Crystal Growth, 2022, 593.
89 Wang K, Kirste R, Mita S, et al. Applied Physics Letters, 2022, 120(3), 032104.
90 Ando Y, Kamano T, Suzuki K, et al. Japanese Journal of Applied Physics, 2012, 51(9), 090101.
91 Yamamoto H, Naoi Y, Fujii Y, et al. International Journal of Modern Physics B, 2002, 16(6-7), 841.
92 Washiyama S, Mita S, Suzuki K, et al. Applied Physics Express, 2011, 4(9), 095502.
93 Li F N, Zhang J W, Wang X L, et al. Crystals, 2017, 7(4), 114.
94 Chiu K A, Wu P H, Wang W L, et al. Surface and Coatings Technology, 2022, 437, 128348.
95 Ichikawa K, Kurone K, Kodama H, et al. Diamond and Related Materials, 2019, 94, 92.
96 Mehmel L, Issaoui R, Brinza O, et al. Applied Physics Letters, 2021, 118(6), 061901.
97 Patel J R, Chaudhuri A R. Physical Review, 1966, 143(2), 601.
98 Yonenaga I, Sumino K. Journal of Applied Physics, 1989, 65(1), 85.
99 Ohmagari S, Yamada H, Tsubouchi N, et al. Applied Physics Letters, 2018, 113(3), 032108.
100 Chang X H, Yan X L, Fan S W, et al. IEEE Transactions on Electron Devices, 2021, 68(12), 6228.
101 Bauer T, Schreck M, Stritzker B. Diamond and Related Materials, 2006, 15(4-8), 472.
102 Ogura M, Kato H, Makino T, et al. Journal of Crystal Growth, 2011, 317(1), 60.
103 Kim S W, Takaya R, Hirano S, et al. Applied Physics Express, 2021, 14(11), 115501.
104 Fischer A M, Bhattacharya A, Hardy A, et al. Diamond and Related Materials, 2023, 140, 110507.
105 Davies N, Khan R, Martineau P, et al. Journal of Physics:Conference Series, 2011, 281(1), 012026.
106 Boussadi A, Tallaire A, Kasu M, et al. Diamond and Related Materials, 2018, 83, 162.
107 Wang R Z, Lin F, Wei Q, et al. Materials, 2022, 15(2), 624.
108 Li D S, Wang Q L, Lv X Y, et al. Journal of Alloys and Compounds, 2023, 960, 170890.
109 Ohmagari S, Teraji T, Koide Y. Journal of Applied Physics, 2011, 110(5), 056105.
110 Akashi N, Fujimaki N, Shikata S. Diamond and Related Materials, 2020, 109, 108024.
111 Traore A, Muret P, Fiori A, et al. Applied Physics Letters, 2014, 104(5), 052105.
112 Umezawa H, Mokuno Y, Yamada H, et al. Diamond and Related Materials, 2010, 19(2-3), 208.
113 Teraji T, Liao M Y, Koide Y. Journal of Applied Physics, 2012, 111(10), 104503.
114 Umezawa H, Saito T, Tokuda N, et al. Applied Physics Letters, 2007, 90(7), 073506.
115 Hanada T, Ohmagari S, Kaneko J H, et al. Applied Physics Letters, 2020, 117(26), 262107.
116 Fujiwara H, Naruoka H, Konishi M, et al. Applied Physics Letters, 2012, 100(24), 242102.
117 Fujiwara H, Naruoka H, Konishi M, et al. Applied Physics Letters, 2012, 101(4), 042104.
118 Mikata N, Takeuchi M, Ohtani N, et al. Diamond and Related Materials, 2022, 127, 109188.
119 Kasu M, Kubovic M, Aleksov A, et al. Diamond and Related Materials, 2004, 13(2), 226.
120 Mu L X, Su K, Hu T T, et al. Diamond and Related Materials, 2022, 130, 109527.
121 Tarun A, Lee S J, Yap C M, et al. Diamond and Related Materials, 2016, 63, 169.
122 Lohstroh A, Sellin P J, Wang S G, et al. Applied Physics Letters, 2007, 90(10), 102111.
123 Secroun A, Brinza O, Tardieu A, et al. Physica Status Solidi (A):Applications and Materials Science, 2007, 204(12), 4298.
124 Su K, He Q, Zhang J, et al. Journal of Physics D:Applied Physics, 2021, 54(14), 145105.
[1] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[2] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[3] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[4] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[5] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[6] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[7] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[8] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[9] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[10] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[11] 周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅. 多尺度实验测试评价高强钢氢脆的研究进展[J]. 材料导报, 2024, 38(10): 22110194-11.
[12] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[13] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[14] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[15] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed