Abstract: Hydrogen embrittlement is both a common phenomenon in high-strength steel (HSS) and an urgent problem that must be solved inthe deve-lopment of HSS. To deeply study the relationship between hydrogen embrittlement and defects of HSS, researchers have developed many macroscale experiments and evaluation methods, such as slow strain rate tensile, linear increase stress, constant load tensile, thermal desorption spectroscopy, and electrochemical hydrogen permeation. These methods are directly used to evaluate the hydrogen embrittlement susceptibility of HSS, which accords with HSS’s parameters like plastic loss, maximum fracture stress, fracture time, stress intensity factor, hydrogen capture energy, and diffusion rate. However, these macroscale experiments cannot accurately explain the causes of HSS’s hydrogen embrittlement in depth. Therefore, researchers have also developed some mesoscale and microscale experiments to locally test changes in HSS’s pro-perties and accurately detect the position where the hydrogen atom was captured. These mesoscale and microscale experiments and characte-rization means include the indentation method, nanoindentation method, micro cantilever bending experiment, atomic probe technology, hydrogen micro-printing technology, scanning Kelvin probe microscope, and so on, which provide a more accurate basis for explaining the mechanism of hydrogen embrittlement and understanding the interaction between hydrogen and HSS’s defects. In this paper, we introduce and compare the above experiments, investigate the research progress of multiscale test evaluation of HSS’s hydrogen embrittlement. Then, we summarize the current research status and mainstream test evaluation methods of HSS’s hydrogen embrittlement so that we provide some ideas on how to use these experiments to further explore HSS’s hydrogen embrittlement.
1 Li Jinxu, Wang Wei, Zhou Yao, et al. Acta Metallurgica Sinica, 2020, 56(4), 444 (in Chinese). 李金许, 王伟, 周耀, 等. 金属学报, 2020, 56(4), 444. 2 Zhang Xiaofeng, Wan Yaxiong, Wu Xuejun, et al. Chinese Journal of Engineering, 2020, 42(8), 949(in Chinese). 章小峰, 万亚雄, 武学俊, 等. 工程科学学报, 2020, 42(8), 949. 3 Gong Peng, Turk Andrej, Nutter John, et al. Acta Materialia, 2022, 223, 117488. 4 Liang Shuang, Huang Minsheng, Zhao Lv, et al. International Journal of Plasticity, 2021, 143, 103023. 5 Momotani Yuji, Shibata Akinobu, Tsuji Nobuhiro. International Journal of Hydrogen Energy, 2022, 47(5), 3131. 6 Song J, Curtin W A. Nature Materials, 2013, 12(2), 145. 7 Afrooz Barnoush, Horst Vehoff. Acta Materialia, 2010, 58(16), 5274. 8 Ian M R, Sofronis P, Nagao A, et al. Metallurgical and Materials Tran-sactions, 2015, 46(6), 2323. 9 Dadfarnia M, Novak P, Ahn D C, et al. Advanced Materials, 2010, 22(10), 1128 10 Michihiko Nagumo, Kenichi Takai. Acta Materialia, 2018, 165, 722. 11 May L M, Mohsen D, Akihide N, et al. Acta Materialia, 2018, 165, 734. 12 Sandeep KumarDwivedi, Manish Vishwakarma. International Journal of Hydrogen Energy, 2018, 43(46), 21603. 13 Motomichi Koyama, Michael Rohwerder, Cemal Cem Tasan, et al. Materials Science and Technology, 2017, 33(13), 1481. 14 Liu Shenguang, Zhou Yao, Wang Zheng, et al. Surface Technology, 2020, 49(8), 1 (in Chinese). 刘神光, 周耀, 王正, 等. 表面技术, 2020, 49(8), 1. 15 Lan Liangyun, Kong Xiangwei, Qiu Chunlin, et al. Acta Metallurgica Sinica, 2021, 57(7), 845 (in Chinese). 兰亮云, 孔祥伟, 邱春林, 等. 金属学报, 2021, 57(7), 845. 16 Hui Weijun, Dong Han, Weng Yuqing. Physical Testing and Chemical Analysis(Part A, Physical Testing), 2001(6), 231 (in Chinese). 惠卫军, 董瀚, 翁宇庆. 理化检验(物理分册), 2001(6), 231. 17 Henthorne M. Corrosion, 2016, 72(12), 1488. 18 Tomohiko Hojo, Eiji Akiyama, Hiroyuki Saitoh, et al. Corrosion Science, 2020, 177, 108957. 19 Dietzel W, Atrens A, Barnoush A. Richard P G, Brian P S, ed, Ga-seous hydrogen embrittlement of materials in energy technologies, Cambridge, Woodhead Publishing, UK, 2012, pp. 237. 20 Devanathan M A V, Stachurski Z. Journal of the Electrochemical Society, 1964, 111(5), 619. 21 Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. International Journal of Hydrogen Energy, 2013, 38(31), 13831. 22 Yang Xiongfei. Fundamental research on microstructure-mechancial pro-perties and hydrogen-trapped behaviors of microalloyed TRIP-assisted annealed martensitic steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2022 (in Chinese). 杨雄飞. 微合金化TRIP型退火马氏体(TAM)钢组织性能与氢行为基础研究. 博士学位论文, 北京科技大学, 2022. 23 Zhu Xu, Zhang Ke, Li Wei, et al. Materials Science & Engineering A, 2016, 658, 400. 24 Zhou Pengwei, Li Wei, Zhao Hongshan, et al. International Journal of Hydrogen Energy, 2018, 43(24), 10905. 25 Zhao Haoyang, Wang Pei, Li Jinxu. International Journal of Hydrogen Energy, 2021, 46(70), 34983. 26 Kissinger H E. Analytical Chemistry, 1957, 29(11), 1702. 27 Fatemi N S, Whitehead R, Price D, et al. Thermochimica Acta, 1984, 78(1-3), 437. 28 dos Santos T A A, de Lima M M, dos Santos D S, et al. International Journal of Hydrogen Energy, 2022, 47(2), 1358. 29 Dong Futao, Venezuela Jeffrey, Li Huixing, et al. Corrosion Science, 2021, 185, 109440. 30 Seo Hyun Joo, Kim Jae Nam, Jo Jang Woong, et al. International Journal of Hydrogen Energy, 2021, 46(37), 19670. 31 Sugiyama Yuri, Takai Kenichi. Acta Materialia, 2021, 208, 116663. 32 Depover T, Verbeken K. Materials Science & Engineering A, 2016, 675, 299. 33 Depover T, Verbeken K. Corrosion Science, 2016, 112, 308. 34 Momotani Yuji, Shibata Akinobu, Terada Daisuke, et al. International Journal of Hydrogen Energy, 2016, 42(5), 3371. 35 Szost B A, Rivera Díaz del Castillo P E J. Scripta Materialia, 2012, 68(7), 467. 36 Akio Yonezu, Takuma Hara, Toshiyuki Kondo, et al. Materials Science & Engineering A, 2011, 531, 147. 37 Ke Wu, Xiaohui Lu, Pengwei Zhou, et al. Materials Science and Technology, 2017, 33(13), 1497. 38 Asadipoor M, Barnoush A. International Journal of Hydrogen Energy, 2022, 47(17), 10112. 39 Hajilou Tarlan, Deng Yun, Rogne Bjørn Rune, et al. Scripta Materialia, 2016, 132, 17. 40 Walter L C, Olivier L, Andrei K, et al. Materials Science & Engineering A, 2016, 651, 859. 41 Momotani Yuji, Shibata Akinobu, Yonemura Takashi, et al. Scripta Materialia, 2020, 178, 318. 42 Kazuho Okada, Akinobu Shibata, Yasunari Takeda, et al. International Journal of Hydrogen Energy, 2018, 43(24), 11298. 43 Ryu J H, Kim S K, Lee C S, et al. Proceedings:Mathematical, Physical and Engineering Sciences, 2013, 469(2149), 1471. 44 Senöz C, Evers S, Stratmann M, et al. Electrochemistry Communications, 2011, 13(12), 1542. 45 Stefan Evers, Ceylan Senöz, Michael Rohwerder. Science and Technology of Advanced Materials, 2013, 14(1), 014201. 46 Hua Zhengli, Zhu Shengyi, Shang Juan, et al. Materials Letters, 2019, 245, 41. 47 Shang Juan, Hua Zhengli. Applied Surface Science, 2020, 528, 147050. 48 Zhang Binglu, Zhu Qisi, Xu Chi, et al. Nature Communications, 2022, 13(1), 3858. 49 Walker A V. Microscopy and Microanalysis, 2017, 23(S1), 1042. 50 Zhang Huiyun, Hu Jun, Meng Xianming, et al. Journal of Materials Research and Technology, 2022, 17, 2831. 51 Wang Tao, Fang Xueyang, Zhang Huiyun, et al. Materials Letters, 2022, 313, 131728. 52 Oded Sobol, Gert Nolze, Romeo Saliwan-Neumann, et al. International Journal of Hydrogen Energy, 2017, 42(39), 25114. 53 Wang Dong, Hagen Anette Brocks, Wan Di, et al. Materials Science & Engineering A, 2021, 824, 141819. 54 Jiali Zhang, Stefan Zaefferer. International Journal of Minerals, Metallurgy and Materials, 2021, 28(5), 877. 55 Lu X, Ma Y, Zamanzade M, et al. International Journal of Hydrogen Energy, 2019, 44(36), 20545. 56 Rajiv K, Mittal K L. Developments in surface contamination and cleaning, Elsevier, Netherlands, 2019, pp. 150. 57 Jiang Y F, Zhang B, Zhou Y, et al. Journal of Materials Research and Technology, 2018, 34(8), 1344. 58 Chen YiSheng, Lu Hongzhou, Liang Jiangtao, et al. Science, 2020, 367(6474), 171. 59 Bae Kyung-Oh, Shin Hyung-Seop, Baek Un-Bong. International Journal of Hydrogen Energy, 2021, 46(38), 20107. 60 Chen Y S, Haley D, Gerstl S S A, et al. Science, 2017, 355(6330), 1196. 61 Wei F G, Tsuzaki K. Richard P G, Brian P S, ed, Gaseous hydrogen embrittlement of materials in energy technologies, Cambridge, Woodhead Publishing, UK, 2012, pp. 493. 62 Takahashi Jun, Kawakami Kazuto, Kobayashi Yukiko, et al. Scripta Materialia, 2010, 63(3), 261. 63 Xu Pingda, Li Chongyang, Li Wei, et al. Materials Science & Enginee-ring A, 2022, 831, 142046. 64 Wallaert E, Depover T, Arafin M, et al. Metallurgical&Materials Tran-sactions A, 2014, 45(5), 2412. 65 Zhang Shiqi, Wan Jifang, Zhao Qiyue, et al. Corrosion Science, 2020, 164, 108345. 66 Shi Rongjian, Ma Yuan, Wang Zidong, et al. Acta Materialia, 2020, 200, 686 67 Depover T, Verbeken K. Corrosion Science, 2016, 112, 308. 68 Turk A, San M D, Rivera D C P E J, et al. Scripta Materialia, 2018, 152, 112. 69 JunTakahashi, Kazuto Kawakami, Yukiko Kobayashi. Acta Materialia, 2018, 153, 193. 70 Jisung Yoo, Min Chul Jo, Dae Woong Kim, et al. Acta Materialia, 2020, 196, 370. 71 Motomichi K, Hauke S, Sergiy V M, et al. International Journal of Hydrogen Energy, 2014, 39(9), 4634. 72 Zhang Xiaofeng, Kan Zhongwei, Yang Yong, et al. Materials Science & Engineering A, 2020, 795, 140027. 73 Elkot Mohamed Naguib, Sun Binhan, Zhou Xuyang, et al. Acta Materialia, 2022, 241, 118392. 74 Young Jin Kwon, Seung-Pill Jung, Byeong-Joo Lee, et al. International Journal of Hydrogen Energy, 2018, 43(21), 10129. 75 Zhao Ning, Zhao Qiangqiang, He Yanlin, et al. Journal of Materials Research and Technology, 2021, 15, 6883. 76 Zhang Shiqi, Fan Endian, Wan Jifang, et al. Corrosion Science, 2018, 139, 83. 77 Zhang Shiqi, Xu Dayang, Huang Feng, et al. Materials & Design, 2021, 210, 110090. 78 Wang Dong, Lu Xu, Wan Di, et al. Materials Science & Engineering A, 2021, 802, 140638. 79 Tian Huiyun, Xin Juncheng, LiYong, et al. Corrosion Science, 2019, 158, 108089. 80 Zhang Cheng, Yu Hang, Zhi Huihui, et al. Corrosion Science, 2021, 192, 109791. 81 Zhang Cheng, Zhi Huihui, Antonov Stoichko, et al. Materials Science & Engineering A, 2022, 834, 142596. 82 Zhang Cheng, Zhi Huihui, Antonov Stoichko, et al. Scripta Materialia, 2021, 190, 108. 83 Zhang Cheng, Yu Hang, Antonov Stoichko, et al. Corrosion Science, 2022, 207, 110579. 84 Lai Z H, Lin Y T, Sun Y H, et al. Scripta Materialia, 2022, 213, 114629.