Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110194-11    https://doi.org/10.11896/cldb.22110194
  金属与金属基复合材料 |
多尺度实验测试评价高强钢氢脆的研究进展
周华生, 曹燕, 章小峰*, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅
安徽工业大学冶金工程学院,安徽 马鞍山 243002
Research Progress of Studying Hydrogen Embrittlement in High-strength Steel by Multiscale Experiments and Evaluation Methods
ZHOU Huasheng, CAO Yan, ZHANG Xiaofeng*, WU Di, ZHAO Xinlei, XING Mei, LIN Fangmin, JIANG Ya
School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 24975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢脆是高强钢中普遍存在的现象,也是其研发过程中必须攻克的难题。为了深入理解高强钢的氢脆与其缺陷之间的关系,发展了许多测试评价方法,如宏观尺度的慢应变速率拉伸、线性增加应力、恒载荷拉伸这类力学实验以及检测氢含量的热脱附光谱法和电化学氢渗透法,根据高强钢的塑性损失、最大断裂应力、断裂时间、应力强度因子、氢的俘获能和扩散速率等参数直接进行氢脆敏感性的评价。但宏观尺度的实验无法深入地研究高强钢发生氢脆的机理,通过介观、微观尺度的实验和表征手段,如压痕法、纳米压痕法、微悬臂梁弯曲实验、原子探针技术、氢微印技术、扫描开尔文探针显微镜等,从局部测试高强钢性能变化和准确检测氢被俘获的位置,能够在解释氢脆机理和认识氢与高强钢中缺陷之间相互作用的问题上提供更加准确的依据。本文介绍、对比了上述这些实验方法并调研了多尺度实验测试评价高强钢氢脆的研究进展,总结了高强钢氢脆研究现状和主流的测试评价方法,为深入探索高强钢氢脆提供了思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周华生
曹燕
章小峰
吴迪
赵鑫磊
邢梅
林方敏
江雅
关键词:  高强钢  氢脆  多尺度缺陷  多尺度实验    
Abstract: Hydrogen embrittlement is both a common phenomenon in high-strength steel (HSS) and an urgent problem that must be solved inthe deve-lopment of HSS. To deeply study the relationship between hydrogen embrittlement and defects of HSS, researchers have developed many macroscale experiments and evaluation methods, such as slow strain rate tensile, linear increase stress, constant load tensile, thermal desorption spectroscopy, and electrochemical hydrogen permeation. These methods are directly used to evaluate the hydrogen embrittlement susceptibility of HSS, which accords with HSS’s parameters like plastic loss, maximum fracture stress, fracture time, stress intensity factor, hydrogen capture energy, and diffusion rate. However, these macroscale experiments cannot accurately explain the causes of HSS’s hydrogen embrittlement in depth. Therefore, researchers have also developed some mesoscale and microscale experiments to locally test changes in HSS’s pro-perties and accurately detect the position where the hydrogen atom was captured. These mesoscale and microscale experiments and characte-rization means include the indentation method, nanoindentation method, micro cantilever bending experiment, atomic probe technology, hydrogen micro-printing technology, scanning Kelvin probe microscope, and so on, which provide a more accurate basis for explaining the mechanism of hydrogen embrittlement and understanding the interaction between hydrogen and HSS’s defects. In this paper, we introduce and compare the above experiments, investigate the research progress of multiscale test evaluation of HSS’s hydrogen embrittlement. Then, we summarize the current research status and mainstream test evaluation methods of HSS’s hydrogen embrittlement so that we provide some ideas on how to use these experiments to further explore HSS’s hydrogen embrittlement.
Key words:  high-strength steel    hydrogen embrittlement    multiscale defects    multiscale experiments
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TG111.91  
基金资助: 安徽省自然科学基金面上项目(2108085ME143);安徽省高校自然科学基金重大项目(KJ2021ZD0045)
通讯作者:  *章小峰,安徽工业大学冶金工程学院副教授。1998年本科毕业于武汉科技大学,2008年7月在华中科技大学材料加工工程专业取得博士学位,同年8月到安徽工业大学任职。任职期间,于2013—2016年在南京理工大学进行博士后研究工作。主要从事先进汽车用钢材料组织性能控制方面的研究工作。近年来,在先进钢铁材料领域发表论文50余篇。egzxf@ahut.edu.cn   
作者简介:  周华生,2021年7月于安徽工业大学获得工学学士学位。现为安徽工业大学冶金工程学院材料与化工专业硕士研究生,在章小峰和曹燕两位老师的指导下进行研究。主要从事高强钢氢脆领域的相关研究。
引用本文:    
周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅. 多尺度实验测试评价高强钢氢脆的研究进展[J]. 材料导报, 2024, 38(10): 22110194-11.
ZHOU Huasheng, CAO Yan, ZHANG Xiaofeng, WU Di, ZHAO Xinlei, XING Mei, LIN Fangmin, JIANG Ya. Research Progress of Studying Hydrogen Embrittlement in High-strength Steel by Multiscale Experiments and Evaluation Methods. Materials Reports, 2024, 38(10): 22110194-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110194  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110194
1 Li Jinxu, Wang Wei, Zhou Yao, et al. Acta Metallurgica Sinica, 2020, 56(4), 444 (in Chinese).
李金许, 王伟, 周耀, 等. 金属学报, 2020, 56(4), 444.
2 Zhang Xiaofeng, Wan Yaxiong, Wu Xuejun, et al. Chinese Journal of Engineering, 2020, 42(8), 949(in Chinese).
章小峰, 万亚雄, 武学俊, 等. 工程科学学报, 2020, 42(8), 949.
3 Gong Peng, Turk Andrej, Nutter John, et al. Acta Materialia, 2022, 223, 117488.
4 Liang Shuang, Huang Minsheng, Zhao Lv, et al. International Journal of Plasticity, 2021, 143, 103023.
5 Momotani Yuji, Shibata Akinobu, Tsuji Nobuhiro. International Journal of Hydrogen Energy, 2022, 47(5), 3131.
6 Song J, Curtin W A. Nature Materials, 2013, 12(2), 145.
7 Afrooz Barnoush, Horst Vehoff. Acta Materialia, 2010, 58(16), 5274.
8 Ian M R, Sofronis P, Nagao A, et al. Metallurgical and Materials Tran-sactions, 2015, 46(6), 2323.
9 Dadfarnia M, Novak P, Ahn D C, et al. Advanced Materials, 2010, 22(10), 1128
10 Michihiko Nagumo, Kenichi Takai. Acta Materialia, 2018, 165, 722.
11 May L M, Mohsen D, Akihide N, et al. Acta Materialia, 2018, 165, 734.
12 Sandeep KumarDwivedi, Manish Vishwakarma. International Journal of Hydrogen Energy, 2018, 43(46), 21603.
13 Motomichi Koyama, Michael Rohwerder, Cemal Cem Tasan, et al. Materials Science and Technology, 2017, 33(13), 1481.
14 Liu Shenguang, Zhou Yao, Wang Zheng, et al. Surface Technology, 2020, 49(8), 1 (in Chinese).
刘神光, 周耀, 王正, 等. 表面技术, 2020, 49(8), 1.
15 Lan Liangyun, Kong Xiangwei, Qiu Chunlin, et al. Acta Metallurgica Sinica, 2021, 57(7), 845 (in Chinese).
兰亮云, 孔祥伟, 邱春林, 等. 金属学报, 2021, 57(7), 845.
16 Hui Weijun, Dong Han, Weng Yuqing. Physical Testing and Chemical Analysis(Part A, Physical Testing), 2001(6), 231 (in Chinese).
惠卫军, 董瀚, 翁宇庆. 理化检验(物理分册), 2001(6), 231.
17 Henthorne M. Corrosion, 2016, 72(12), 1488.
18 Tomohiko Hojo, Eiji Akiyama, Hiroyuki Saitoh, et al. Corrosion Science, 2020, 177, 108957.
19 Dietzel W, Atrens A, Barnoush A. Richard P G, Brian P S, ed, Ga-seous hydrogen embrittlement of materials in energy technologies, Cambridge, Woodhead Publishing, UK, 2012, pp. 237.
20 Devanathan M A V, Stachurski Z. Journal of the Electrochemical Society, 1964, 111(5), 619.
21 Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. International Journal of Hydrogen Energy, 2013, 38(31), 13831.
22 Yang Xiongfei. Fundamental research on microstructure-mechancial pro-perties and hydrogen-trapped behaviors of microalloyed TRIP-assisted annealed martensitic steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2022 (in Chinese).
杨雄飞. 微合金化TRIP型退火马氏体(TAM)钢组织性能与氢行为基础研究. 博士学位论文, 北京科技大学, 2022.
23 Zhu Xu, Zhang Ke, Li Wei, et al. Materials Science & Engineering A, 2016, 658, 400.
24 Zhou Pengwei, Li Wei, Zhao Hongshan, et al. International Journal of Hydrogen Energy, 2018, 43(24), 10905.
25 Zhao Haoyang, Wang Pei, Li Jinxu. International Journal of Hydrogen Energy, 2021, 46(70), 34983.
26 Kissinger H E. Analytical Chemistry, 1957, 29(11), 1702.
27 Fatemi N S, Whitehead R, Price D, et al. Thermochimica Acta, 1984, 78(1-3), 437.
28 dos Santos T A A, de Lima M M, dos Santos D S, et al. International Journal of Hydrogen Energy, 2022, 47(2), 1358.
29 Dong Futao, Venezuela Jeffrey, Li Huixing, et al. Corrosion Science, 2021, 185, 109440.
30 Seo Hyun Joo, Kim Jae Nam, Jo Jang Woong, et al. International Journal of Hydrogen Energy, 2021, 46(37), 19670.
31 Sugiyama Yuri, Takai Kenichi. Acta Materialia, 2021, 208, 116663.
32 Depover T, Verbeken K. Materials Science & Engineering A, 2016, 675, 299.
33 Depover T, Verbeken K. Corrosion Science, 2016, 112, 308.
34 Momotani Yuji, Shibata Akinobu, Terada Daisuke, et al. International Journal of Hydrogen Energy, 2016, 42(5), 3371.
35 Szost B A, Rivera Díaz del Castillo P E J. Scripta Materialia, 2012, 68(7), 467.
36 Akio Yonezu, Takuma Hara, Toshiyuki Kondo, et al. Materials Science & Engineering A, 2011, 531, 147.
37 Ke Wu, Xiaohui Lu, Pengwei Zhou, et al. Materials Science and Technology, 2017, 33(13), 1497.
38 Asadipoor M, Barnoush A. International Journal of Hydrogen Energy, 2022, 47(17), 10112.
39 Hajilou Tarlan, Deng Yun, Rogne Bjørn Rune, et al. Scripta Materialia, 2016, 132, 17.
40 Walter L C, Olivier L, Andrei K, et al. Materials Science & Engineering A, 2016, 651, 859.
41 Momotani Yuji, Shibata Akinobu, Yonemura Takashi, et al. Scripta Materialia, 2020, 178, 318.
42 Kazuho Okada, Akinobu Shibata, Yasunari Takeda, et al. International Journal of Hydrogen Energy, 2018, 43(24), 11298.
43 Ryu J H, Kim S K, Lee C S, et al. Proceedings:Mathematical, Physical and Engineering Sciences, 2013, 469(2149), 1471.
44 Senöz C, Evers S, Stratmann M, et al. Electrochemistry Communications, 2011, 13(12), 1542.
45 Stefan Evers, Ceylan Senöz, Michael Rohwerder. Science and Technology of Advanced Materials, 2013, 14(1), 014201.
46 Hua Zhengli, Zhu Shengyi, Shang Juan, et al. Materials Letters, 2019, 245, 41.
47 Shang Juan, Hua Zhengli. Applied Surface Science, 2020, 528, 147050.
48 Zhang Binglu, Zhu Qisi, Xu Chi, et al. Nature Communications, 2022, 13(1), 3858.
49 Walker A V. Microscopy and Microanalysis, 2017, 23(S1), 1042.
50 Zhang Huiyun, Hu Jun, Meng Xianming, et al. Journal of Materials Research and Technology, 2022, 17, 2831.
51 Wang Tao, Fang Xueyang, Zhang Huiyun, et al. Materials Letters, 2022, 313, 131728.
52 Oded Sobol, Gert Nolze, Romeo Saliwan-Neumann, et al. International Journal of Hydrogen Energy, 2017, 42(39), 25114.
53 Wang Dong, Hagen Anette Brocks, Wan Di, et al. Materials Science & Engineering A, 2021, 824, 141819.
54 Jiali Zhang, Stefan Zaefferer. International Journal of Minerals, Metallurgy and Materials, 2021, 28(5), 877.
55 Lu X, Ma Y, Zamanzade M, et al. International Journal of Hydrogen Energy, 2019, 44(36), 20545.
56 Rajiv K, Mittal K L. Developments in surface contamination and cleaning, Elsevier, Netherlands, 2019, pp. 150.
57 Jiang Y F, Zhang B, Zhou Y, et al. Journal of Materials Research and Technology, 2018, 34(8), 1344.
58 Chen YiSheng, Lu Hongzhou, Liang Jiangtao, et al. Science, 2020, 367(6474), 171.
59 Bae Kyung-Oh, Shin Hyung-Seop, Baek Un-Bong. International Journal of Hydrogen Energy, 2021, 46(38), 20107.
60 Chen Y S, Haley D, Gerstl S S A, et al. Science, 2017, 355(6330), 1196.
61 Wei F G, Tsuzaki K. Richard P G, Brian P S, ed, Gaseous hydrogen embrittlement of materials in energy technologies, Cambridge, Woodhead Publishing, UK, 2012, pp. 493.
62 Takahashi Jun, Kawakami Kazuto, Kobayashi Yukiko, et al. Scripta Materialia, 2010, 63(3), 261.
63 Xu Pingda, Li Chongyang, Li Wei, et al. Materials Science & Enginee-ring A, 2022, 831, 142046.
64 Wallaert E, Depover T, Arafin M, et al. Metallurgical&Materials Tran-sactions A, 2014, 45(5), 2412.
65 Zhang Shiqi, Wan Jifang, Zhao Qiyue, et al. Corrosion Science, 2020, 164, 108345.
66 Shi Rongjian, Ma Yuan, Wang Zidong, et al. Acta Materialia, 2020, 200, 686
67 Depover T, Verbeken K. Corrosion Science, 2016, 112, 308.
68 Turk A, San M D, Rivera D C P E J, et al. Scripta Materialia, 2018, 152, 112.
69 JunTakahashi, Kazuto Kawakami, Yukiko Kobayashi. Acta Materialia, 2018, 153, 193.
70 Jisung Yoo, Min Chul Jo, Dae Woong Kim, et al. Acta Materialia, 2020, 196, 370.
71 Motomichi K, Hauke S, Sergiy V M, et al. International Journal of Hydrogen Energy, 2014, 39(9), 4634.
72 Zhang Xiaofeng, Kan Zhongwei, Yang Yong, et al. Materials Science & Engineering A, 2020, 795, 140027.
73 Elkot Mohamed Naguib, Sun Binhan, Zhou Xuyang, et al. Acta Materialia, 2022, 241, 118392.
74 Young Jin Kwon, Seung-Pill Jung, Byeong-Joo Lee, et al. International Journal of Hydrogen Energy, 2018, 43(21), 10129.
75 Zhao Ning, Zhao Qiangqiang, He Yanlin, et al. Journal of Materials Research and Technology, 2021, 15, 6883.
76 Zhang Shiqi, Fan Endian, Wan Jifang, et al. Corrosion Science, 2018, 139, 83.
77 Zhang Shiqi, Xu Dayang, Huang Feng, et al. Materials & Design, 2021, 210, 110090.
78 Wang Dong, Lu Xu, Wan Di, et al. Materials Science & Engineering A, 2021, 802, 140638.
79 Tian Huiyun, Xin Juncheng, LiYong, et al. Corrosion Science, 2019, 158, 108089.
80 Zhang Cheng, Yu Hang, Zhi Huihui, et al. Corrosion Science, 2021, 192, 109791.
81 Zhang Cheng, Zhi Huihui, Antonov Stoichko, et al. Materials Science & Engineering A, 2022, 834, 142596.
82 Zhang Cheng, Zhi Huihui, Antonov Stoichko, et al. Scripta Materialia, 2021, 190, 108.
83 Zhang Cheng, Yu Hang, Antonov Stoichko, et al. Corrosion Science, 2022, 207, 110579.
84 Lai Z H, Lin Y T, Sun Y H, et al. Scripta Materialia, 2022, 213, 114629.
[1] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[2] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[3] 陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
[4] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[5] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[6] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[7] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[8] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[9] 陈光鹏, 张春涛. 泡沫灭火后Q460高强钢力学性能试验研究[J]. 材料导报, 2021, 35(6): 6151-6156.
[10] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[11] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[12] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[13] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[14] 易金权, 曾凯, 邢保英, 冯煜阳, 翟停停. DP780高强钢胶接点焊的多元非线性回归模型[J]. 材料导报, 2020, 34(11): 11071-11075.
[15] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed