Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 24030104-9    https://doi.org/10.11896/cldb.24030104
  无机非金属及其复合材料 |
基于阵列信号空频域分析的隧道衬砌开裂声波定位法
王云潇1, 刘元雪1,2,*, 姚未来1, 穆锐1, 龚宏伟1
1 陆军勤务学院,重庆 401311
2 高原山地环境下设施破坏机制与防护重庆市重点实验室,重庆 401311
Acoustic Source Localization Method for Lining Cracking of Tunnel Based on Array Signal Processing in Space-frequency Domain
WANG Yunxiao1, LIU Yuanxue1,2,*, YAO Weilai1, MU Rui1, GONG Hongwei1
1 Army Logistics Academy of PLA, Chongqing 401311, China
2 Chongqing Key Laboratory of Failure Mechanism and Protection of Facility in Plateau and Mountain Environment, Chongqing 401311, China
下载:  全 文 ( PDF ) ( 4845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 裂缝的实时监测对隧道的长期稳定和正常使用至关重要,在隧道病害的超前预警与防治中具有重要作用。本工作提出一种基于阵列信号频域相位差与声源空域方位函数关系的定位新方法。衬砌开裂产生的声波以开裂点为球心向隧道内辐射,到达直角三棱锥传感器阵列的声信号相位差与频率线性相关,斜率是声源方位的三角函数。利用衬砌开裂声波的宽频特性可获得多频率下的相位差,通过线性拟合获得斜率,进而确定声源方位,方位矢量与衬砌表面相交可确定三维坐标。仿真模拟直墙拱顶隧道在混响与噪声条件下衬砌开裂发出声波,采用本方法获得了较高的定位精度,通过回龙山隧道的数值模拟裂缝定位与直墙拱顶隧道的现场试验验证了此方法可有效监测隧道衬砌裂缝的裂缝长度和扩展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王云潇
刘元雪
姚未来
穆锐
龚宏伟
关键词:  裂缝监测  声波定位  相位差  三棱锥阵列  到时拾取    
Abstract: Real-time monitoring of cracks plays a vital role in the long-term stability and normal operation of tunnels. It is conducive to the early warning and prevention of tunnel diseases. This work presents a new localization method based on the relationship between the phase difference in the frequency domain of array signal and the azimuth in the spatial domain of sound source. The sound wave generated by lining cracking radiates into the tunnel with the cracking point as the spherical center. The phase difference of the sound signal arriving at the triangle pyramid sensor array is linearly related to the frequency. And the slope is the trigonometric function of the orientation of sound source. The phase difference at multiple frequencies can be obtained in view of the wide frequency characteristics of the sound wave of the lining cracking. The slope can be obtained by linear fitting, and then the orientation of the sound source can be determined. Its three-dimensional coordinates can be determined by the intersection of the azimuth vector and the lining surface. After simulating the sound waves emitted by cracking in the lining of a straight wall arch tunnel under reverberate and noisy condition, the proposed method achieves high positioning accuracy. The numerical simulation of crack localization in Huilongshan tunnel and the field test of a straight wall arch tunnel verify that the proposed method can effectively monitor the crack length and expansion direction of the lining cracks.
Key words:  crack monitoring    sound source localization    phase difference    triangular pyramid array    phase pick
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  U25  
基金资助: 国家自然科学基金(41877219);重庆市自然科学基金院士专项(cstc2021yszx-jcyjX0002; CSTB2023YSZX-JCX0004);重庆市研究生科研创新项目(CYB22296)
通讯作者:  * 刘元雪,陆军勤务学院教授、博士研究生导师,主要从事岩土体本构关系与地下工程稳定性的教学与科研工作。目前主持国家级和省部级项目3项,出版中英文专著各1部,授权发明专利、软件著作权多项,发表论文110余篇,包括Construction and Building Materials、International Journal of Impact Engineering、Bulletin of Engineering Geology and the Environment、《岩土力学》 《岩土工程学报》等。lyuanxue@vip.sina.com   
作者简介:  王云潇,2018年6月、2020年12月分别于重庆大学和陆军工程大学获得工学学士学位和硕士学位。现为陆军勤务学院博士研究生,在刘元雪教授的指导下进行研究。目前主要研究领域为隧道健康监测、声源定位。
引用本文:    
王云潇, 刘元雪, 姚未来, 穆锐, 龚宏伟. 基于阵列信号空频域分析的隧道衬砌开裂声波定位法[J]. 材料导报, 2024, 38(20): 24030104-9.
WANG Yunxiao, LIU Yuanxue, YAO Weilai, MU Rui, GONG Hongwei. Acoustic Source Localization Method for Lining Cracking of Tunnel Based on Array Signal Processing in Space-frequency Domain. Materials Reports, 2024, 38(20): 24030104-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24030104  或          http://www.mater-rep.com/CN/Y2024/V38/I20/24030104
1 Liu Y, Wang P Y, Wang S H, et al. Journal of Northeastern University (Natural Science), 2019, 40(8), 1185 (in Chinese).
刘宇, 王鹏宇, 王述红, 等. 东北大学学报(自然科学版), 2019, 40(8), 1185.
2 Ren S, Zhu Q W, Tu X Y, et al. Journal of Zhejiang University (Engineering Science), 2022, 56(1), 92.
3 Tao J, Zhu X H, Zheng Y H. Tunnel Construction, 2022, 42(6), 1091 (in Chinese).
陶杰, 朱熙豪, 郑于海. 隧道建设(中英文), 2022, 42(6), 1091.
4 Xie X Y, Wang H Z, Zhou B, et al. Chinese Journal of Underground Space and Engineering, 2022, 18(3), 1025 (in Chinese).
谢雄耀, 王皓正, 周彪, 等. 地下空间与工程学报, 2022, 18(3), 1025.
5 Wang J F, Qiu Y, Liu S Z. Journal of Zhejiang University (Engineering Science), 2022, 56(7), 1404.
6 Li T B, Xu W H, Ma C C, et al. Chinese Journal of Rock Mechanics and Engineering, https://doi.org/10.13722/j.cnki.jrme.2023.0433(in Chinese).
李天斌, 许韦豪, 马春驰, 等. 岩石力学与工程学报, https://doi.org/10.13722/j.cnki.jrme.2023.0433.
7 Han T R, Wu G, Lu Y. Measurement, 2021, 179(4), 109461.
8 Yang J, Zhang K, Cheng L, et al. Piezoelectrics & Acoustooptics, 2019, 41(4), 481(in Chinese).
杨杰, 张凯, 程琳, 等. 压电与声光, 2019, 41(4), 481.
9 Zhao J B, Liu Y X, Yang J T, et al. Rock and Soil Mechanics, 2020, 41(12), 4116 (in Chinese).
赵久彬, 刘元雪, 杨骏堂, 等. 岩土力学, 2020, 41(12), 4116.
10 Zhao J B, Liu Y X, Liu C J, et al. Journal of Central South University, 2021, 28(3), 816.
11 Zhao, J B, Liu, Y X, Yang, J T. Bulletin of Engineering Geology and the Environment, 2021, 80(2), 889.
12 Zheng H G, Li Z J, Huang J S, et al. Progress in Geophysics, 2023, 38(1), 122(in Chinese).
郑海刚, 黎哲君, 黄金水, 等. 地球物理学进展, 2023, 38(1), 122.
13 Szuberla, C. Olson, J. Arnoult, K. Journal of the Acoustical Society of America, 2009, 126(5), EL112.
14 Bai Y S, Liu Y X, Gao G J, et al. Instruments and Experimental Techniques, 2022, 66(1), 156.
15 Ham S, Popovics J S. Automation in Construction, 2015, 58(OCT.), 155.
16 Tang S B, Liu Y H, Xu H R, et al. Journal of Central South University, 2023, 30(12), 4182.
17 Zhao G F, Luo D N, Su G S, et al. Applied Acoustics, 2022, 191, 108671.
18 Du G H, Zhu Z M, Gong X F. Fundamentals of acoustics, Nanjing University Press, Nanjing, 2001, pp.309 (in Chinese).
杜功焕, 朱哲明, 龚秀芬. 声学基础, 南京大学出版社, 2001, pp.309.
19 Li Z. Shanxi Architecture. 2010, 36(21), 342 (in Chinese).
李柱. 山西建筑, 2010, 36(21), 342.
20 Cheng C, Liu S Y, Wu, H Z, et al. Signal Processing:the Official Publication of the European Association for Signal Processing (EURASIP), 2023, 208, 108988.
21 Hu, Y G, Abhayapala, T D, Samarasinghe P N. IEEE-ACM Transactions on Audio Speech and Language Processing, 2021, 29, 253.
22 Lu F, Zhao H K, Zhao X R, et al. Electronics, 2022, 11(12), 1916.
23 Su X L, Liu Z, Sun B, et al. Journal of Systems Engineering and Electronics, 2022, 33(2), 269.
24 Xiao D H, He T, Pan Q, et al. Ultrasonics, 2014, 54(2), 737.
25 Li Q C, He S G. China Earthquake Engineering Journal, 2019, 41(1), 138 (in Chinese).
李启成, 何书耕. 地震工程学报, 2019, 41(1), 138.
26 Jiang Z W, Chen H, Liu W, et al. Signal Processing, 2022, 201(108735), 1.
27 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete. China Architecture & Building Press, China, 2011, pp.11(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程, 中国建筑工业出版社, 2011, pp.11.
28 Kim K, Cho H, Sohn D, et al. Construction and Building Materials, 2021, 272(11), 1.
29 Zhong Z, Zhang H, Hu Y J, et al. Measurement, 2023, 206, 112335.
30 Haider N S. Biomedical Signal Processing and Control, 2021, 64(102313), 1.
No related articles found!
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed