Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 24050146-9    https://doi.org/10.11896/cldb.24050146
  金属与金属基复合材料 |
不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型
叶拓1, 邱飒蔚1, 夏二立1, 郭鹏程1,2,*, 吴远志1, 李落星2,3
1 湖南工学院智能制造与机械工程学院,湖南 衡阳 421002
2 湖南大学重庆研究院,重庆 400044
3 湖南大学整车先进设计制造技术全国重点实验室,长沙 410082
Mechanical Responses and Constitutive Modeling of an Extruded WE43 Magnesium Alloy Under High-speed Impact with Different Loading Paths
YE Tuo1, QIU Sawei1, XIA Erli1, GUO Pengcheng1,2,*, WU Yuanzhi1, LI Luoxing2,3
1 School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 Research Institute of Hunan University in Chongqing, Hunan University, Chongqing 400044, China
3 State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 6437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用分离式霍普金森压杆和多种显微表征方法,研究了不同热处理状态和加载路径下挤压WE43镁合金的室温动态力学响应行为。结果表明挤压WE43镁合金的各向异性较弱,其真应力-真应变曲线都为“C”形,屈服强度和极限强度都具有正的应变速率敏感性。不同热处理状态和加载路径下,挤压WE43镁合金都产生了较多的形变孪晶,同时伴有少量的孪晶交叉。孪晶虽然对热处理状态和加载路径都不敏感,但能够促进胞状位错亚结构的形成。当加载应变速率增至4 120 s-1时,在绝热温升及其诱导的动态回复作用下,孪晶密度反而降低。孪生和非基面滑移相协调是室温下挤压WE43镁合金的主导变形机制。基于经典J-C本构,采用应变和应变速率的多项式函数对应变硬化项和应变速率硬化项进行修正,构建了不同热处理状态和加载路径下挤压WE43镁合金的力学本构模型。拟合结果与实验的偏差均在±10%以内,相关系数R和平均相对误差AARE分别为0.952和3.28%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶拓
邱飒蔚
夏二立
郭鹏程
吴远志
李落星
关键词:  WE43镁合金  高速冲击  加载路径  力学响应  本构建模    
Abstract: The dynamic mechanical behavior of an extruded WE43 magnesium alloy with various heat treatments under different loading paths at room temperature was investigated by split Hopkinson pressure bar and various microscopic characterization methods. The results show that the true stress-true strain curves of the extruded WE43 magnesium alloy feature a ‘C’ shape with a weak anisotropy. Both its yield strength and ultimate strength show positive strain rate sensitivity. Under different loading paths, a lot of deformation twins generate in the studied alloy with diffe-rent heat treatment states, accompanied by a small amount of twin intersections. Although twinning is insensitive to heat treatment and loading path, it can promote the formation of cellular dislocation substructures. When the applied strain rate increases to 4 120 s-1, the density of twins decreases due to adiabatic temperature rise and induced dynamic recovery. Mutual coordination between twinning and non-basal slip is the dominant deformation mechanism of the extruded WE43 magnesium alloy at room temperature. Based on the classical J-C constitutive model, the strain hardening term and the strain rate hardening term were then modified by polynomial functions of strain and strain rate, and the mechanical constitutive functions under different loading paths were established for various heat-treated WE43 magnesium alloys. The deviations between the results of constitutive fitting and experiment were within ±10%, and the correlation coefficient R and the average relative error AARE were 0.952 and 3.28%, respectively.
Key words:  WE43 magnesium alloy    high-speed impact    loading path    mechanical response    constitutive modeling
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TH142.3  
基金资助: 国家自然科学基金(52201074;52171115;U20A20275);湖南省自然科学基金(2024JJ5644);长沙市自然科学基金(kq2208420)
通讯作者:  * 郭鹏程,湖南工学院智能制造与机械工程学院副教授,2010年于中北大学获得学士学位,2013年于燕山大学获得硕士学位,2017年于湖南大学获机械工程博士学位。主要研究方向为整车多学科多目标优化设计及车身用高强钢与铝镁合金成形技术。共发表学术论文80余篇,授权发明专利5项。gpch860429@163.com   
作者简介:  叶拓,湖南工学院智能制造与机械工程学院副教授。2011年湖南大学材料科学与工程专业本科毕业,2016年湖南大学机械工程专业博士毕业后到湖南工学院工作至今。目前主要从事汽车轻量化材料的制备与加工、金属材料强韧化等方面的研究工作。发表论文40余篇,授权发明专利6项。
引用本文:    
叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
YE Tuo, QIU Sawei, XIA Erli, GUO Pengcheng, WU Yuanzhi, LI Luoxing. Mechanical Responses and Constitutive Modeling of an Extruded WE43 Magnesium Alloy Under High-speed Impact with Different Loading Paths. Materials Reports, 2024, 38(20): 24050146-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24050146  或          http://www.mater-rep.com/CN/Y2024/V38/I20/24050146
1 Wei Y, Han X, Lu L, et al. Automotive Engineering, 2022, 44(4), 449.
2 Li Z, Zhang J, Xiao T, et al. Materials Science and Engineering: A, 2024, 892, 146059.
3 Li Y, Li Y, Lou M, et al. Journal of Mechanical Engineering, 2012, 48(18), 44.
4 Bian M, Sasaki T, Nakata T, et al. Acta Materialia, 2018, 158, 278.
5 Jo S, Whitmore L, Woo S, et al. Scientific Reports, 2020, 10(1), 22413.
6 Joost W, Krajewski P. Scripta Materialia, 2017, 128, 107.
7 Zeng X Q, Chen Y W, Wang J Y, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 2963 (in Chinese).
曾小勤, 陈义文, 王静雅, 等. 中国有色金属学报, 2021, 31(11), 2963.
8 Liu X, Yi H X, Zhu B W, et al. Rare Metal Materials and Engineering, 2019, 48(7), 2171 (in Chinese).
刘筱, 易宏翔, 朱必武, 等. 稀有金属材料与工程, 2019, 48(7), 2171.
9 Wu G, Tong X, Wang C, et al. Journal of Magnesium and Alloys, 2023, 11(10), 3463.
10 Guo P, Li L, Xiao G, et al. Journal of Alloys and Compounds, 2019, 811, 151875.
11 Liu X, Mao P, Wu X, et al. Journal of Materials Engineering and Performance, 2024, 33(1), 398.
12 Guo J, Zhang J, Yu H, et al. Construction and Building Materials, 2023, 382, 131336.
13 Savage D, McWilliams B, Vogel S, et al. International Journal of Impact Engineering, 2020, 143, 103589.
14 Asgari H, Odeshi A, Szpunar J. Materials & Design, 2014, 63(11), 552.
15 Yu J, Liu Z, Dong Y, et al. Journal of Magnesium and Alloys, 2015, 3(2), 134.
16 Wang G, Mao P, Wang Z, et al. Journal of Materials Research and Technology, 2022, 21, 40.
17 Yu J, Song B, Xia D, et al. Journal of Magnesium and Alloys, 2020, 8(3), 849.
18 Wang X, Wang Y, Ni C, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(7), 2177.
19 Asgari H, Odeshi A, Szpunar J, et al. Materials Science and Enginee-ring: A, 2015, 623, 10.
20 Wang Z, Yao S, Cao G, et al. Materials Characterization, 2020, 169, 110615.
21 Hua J, Liu Q, Yang H, et al. International Journal of Mechanical Sciences, 2022, 241, 107942.
22 Yang Y, Yang S, Jiang L. Materials Characterization, 2019, 156, 109840.
23 Xing R, Guo P, Xu C, et al. International Journal of Impact Engineering, 2024, 186, 104875.
24 Xing R, Guo P, Xu C, et al. Journal of Alloys and Compounds, 2024, 983, 173915.
25 Ye T, Li L, Liu X, et al. Materials Science and Engineering: A, 2016, 666, 149.
26 Wang D, Liu S, Wu R, et al. Journal of Alloys and Compounds, 2021, 881, 160663.
27 Wang B, Xin R, Huang G, et al. Materials Science and Engineering A, 2012, 534(2), 588.
28 Hao M, Cheng W, Wang L, et al. Journal of Magnesium and Alloys, 2020, 8(3), 899.
29 Liu X, Hu M Y, Xie C, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(6), 1641 (in Chinese).
刘筱, 胡铭月, 谢超, 等. 中国有色金属学报, 2022, 32(6), 1641.
30 Wang H, Sun X, Kurukuri S, et al. Journal of Magnesium and Alloys, 2023, 11(3), 882.
31 Liu Y Y, Mao P L, Liu Z, et al. Acta Metallurgica Sinica, 2018, 54(6), 950 (in Chinese).
刘晏宇, 毛萍莉, 刘正, 等. 金属学报, 2018, 54(6), 950.
32 Wang Q, Chen S, Jiang B, et al. Journal of Magnesium and Alloys, 2022, 10(12),3576.
33 Qian L, Guo P, Zhang F, et al. Materials Science and Engineering: A, 2013, 561, 266.
34 Guo P C, Li J, Cao S F, et al. Explosion and Shock Waves, 2018, 38(3), 586 (in Chinese).
郭鹏程, 李健, 曹淑芬, 等. 爆炸与冲击, 2018, 38(3), 586.
35 Tang W, Liu Z, Liu S, et al. Journal of Magnesium and Alloys, 2020, 8(4), 1144.
36 Bhattacharyya J, Wang F, Wu P, et al. International Journal of Plasticity, 2016, 81, 123.
37 Zhang J, Han S, Sun Y, et al. Materials Science and Engineering: A, 2023, 880, 145329.
38 Chen F, Guo P, Jiang Z, et al. Acta Metallurgica Sinica (English Letters), 2023, 36(2), 281.
[1] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[2] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[3] 陈斐洋, 郭鹏程, 胡泽豪, 马洪浩, 张立强. 不同温度下AM80镁合金的动态力学响应及本构建模[J]. 材料导报, 2021, 35(16): 16093-16098.
[4] 郝刚领,许巧平. 创新构型泡沫TiAl的制备及其力学响应特征[J]. 《材料导报》期刊社, 2018, 32(10): 1659-1662.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed