Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21050053-7    https://doi.org/10.11896/cldb.21050053
  金属与金属基复合材料 |
激光选区熔化成形金属件的缺陷类型及表征方法概述
彭乐, 郑志军*
华南理工大学机械与汽车工程学院,广州 510640
Review of the Categories and Characterization Methods of Defects in Alloy Prepared by Selective Laser Melting
PENG Le, ZHENG Zhijun*
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 7818KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光选区熔化成形是一种典型的金属增材制造技术。本文首先对激光选区熔化成形的技术原理进行阐述,然后针对该技术的工艺参数及工艺参数对打印件质量的影响进行分析和总结,重点对金属打印件中可能出现的缺陷进行分类和成因分析。在激光选区成形技术制备的金属件中主要包括两类缺陷,一类是组织缺陷,包括气孔、孔隙、未熔合缺陷、裂纹、高密度夹杂及组织的各向异性等;另一类为包括球化、残余应力、翘曲变形、几何误差等在内的非组织缺陷。最后就组织缺陷的无损检测技术的种类和应用范围进行归纳总结,并对未来缺陷检测技术的发展进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭乐
郑志军
关键词:  增材制造  选区激光熔化  缺陷  无损检测    
Abstract: Selective laser melting (SLM) is a typical additive manufacturing technology. In this paper, the fundamental principle of the SLM technology is explained first. Subsequently, the categories of the processing parameters of SLM and their effects on the quality of printed specimens are analyzed and summarized, focusing on the categories of defects probably produced during the printing process. The cause of formation of each defect is discussed and explained. In metal specimens prepared by SLM, two types of detects, namely, microstructural and non-microstructural defects, are usually observed. The former includes pores, porosity, unfused defects, cracks, high density inclusions, and the anisotropy of the microstructure, whereas the latter includes spheroidization, residual stress, warping deformation, and geometric errors. Finally, the types and scope of application of nondestructive testing (NDT) technologies for microstructural defects are summarized, and the prospects for the development of NDT are presented.
Key words:  additive manufacturing    selective laser melting    defect    nondestructive testing
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG665  
基金资助: 广东省自然科学基金(2021A1515010398)
通讯作者:  *郑志军,华南理工大学教授,1998年于重庆建筑大学获学士学位,2003年和2012年于华南理工大学分别获得硕士和博士学位。2016年在澳大利亚联邦科学与工业研究院(CSIRO)做访问学者。主要从事块体纳米材料的双尺度结构的形成机制与微观电化学行为以及金属3D打印材料的组织表征与腐蚀行为方面的研究。在国内外著名刊物发表论文50多篇,包括Corrosion Science、Journal of Solid State Electrochemistry、Materials Science and Engineering A等。发明专利5项。主持或参与国家自然科学基金、省部产学研项目、省攻关、省基金等国家级、省市级项目及企业横向等项目30多项。zjzheng@scut.edu.cn   
作者简介:  彭乐,2019年6月毕业于哈尔滨理工大学,获得学士学位。现为华南理工大学机械与汽车工程学院硕士研究生,在郑志军教授的指导下进行增材制造316L不锈钢组织缺陷及耐蚀性能研究。
引用本文:    
彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
PENG Le, ZHENG Zhijun. Review of the Categories and Characterization Methods of Defects in Alloy Prepared by Selective Laser Melting. Materials Reports, 2023, 37(8): 21050053-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050053  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21050053
1 Mostafa Y, Elbestawi M A, Veldhuis S C. Solid State Phenomena, 2018, 278, 1.
2 Pragana J, Sampaio R, Bragana I, et al. Advances in Industrial and Ma-nufacturing Engineering, 2021,2, 100032.
3 Mugwagwa L, Dimitrov D, Matope S, et al. The International Journal of Advanced Manufacturing Technology, 2019, 102, 2441.
4 Ma R Q, Zhang K, Wei H L, et al. Chinese Journal of Lasers, 2019, 46(2), 48.
马瑞芩, 张凯, 韦辉亮, 等.中国激光, 2019, 46(2), 48.
5 Oliveira J P, LaLonde A D, Mac J. Materials & Design, 2020, 193, 108762.
6 Tapia G, Elwany A. Journal of Manufacturing Science & Engineering, 2014, 136(6), 060801.
7 Qiu C, Kindi M A, Aladawi A S, et al. Scientific Reports, 2018, 8(1), 77.
8 Lee J, Park H J, Chai S, et al. Applied Sciences 2021, 11(4), 196.
9 Cooke S, Ahmadi K, Willerth S, et al. Journal of Manufacturing Processes, 2020, 57, 978.
10 Hrabe N, Gnaupel-Herold T, Quinn T. Internaional Journal of Fatigue, 2017, 94, 202.
11 Chu F Z, Zhang X, Huang W J, et al. Materials Reports, 2021,35(11), 11111(in Chinese).
褚夫众, 张曦, 黄文静, 等. 材料导报, 2021, 35(11), 11111.
12 Gong H J, Rafi K, Gu H F, et al. Materials & Design, 2015, 86, 545.
13 Liu Y, Zhang M, Shi W, et al. Optics & Laser Technology, 2021, 138, 106872.
14 Wang R, Cheung C F. Expert Systems with Application, 2022, 188, 116000.
15 Chen Y Y. Preparation of 316L stainless steel microsphere powders and research on its SLM forming test. Master's Thesis, South China University of Technology, China, 2018 (in Chinese).
陈莹莹. 316L不锈钢微细球形粉末的制备及其SLM成形试验研究. 硕士学位论文, 华南理工大学, 2018.
16 Wei K, Yang Q, Ling B, et al. Materials Science and Engineering, 2020, 772, 138799.1.
17 Zhang B, Li Y, Qian B. Chinese Journal of Mechanical Engineering, 2017, 30(3), 515.
18 Cherry J A, Davies H M, Mehmood S, et al. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8), 869.
19 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35, 127.
20 Hong S P, Ansari M J. Procedia CIRP, 2020, 93, 44.
21 Fang Z C, Wu Z L, Huang C G, et al. Optics & Laser Technology, 2020, 129, 106283.
22 Kabir A, Kyu J H, Merle B, et al. Materials Letters, 2020, 266, 27490.
23 Thijs L, Verhaeghe F, Craeghs T, et al. Acta Materialia, 2010, 58(9), 3303.
24 Aqilah D N, Sayuti A, Farazila Y, et al. Journal of Testing & Evaluation, 2018, 46(4), 1673.
25 Qiu C L, Adkins N J E, Attallan M M. Materials Science and Enginee-ring A, 2013, 578, 230.
26 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080.
27 Xia M J, Gu D D, Yu G Q, et al. International Journal of Machine Tools and Manufacture, 2017, 116, 96.
28 Alhafadhi M H, Krallics G. Machining Science and Technology, 2019, 13, 447.
29 Wang Z, Kawahito Y, Yoshida R, et al. International Journal of Heat and Mass Transfer, 2018, 118, 562.
30 Ning J, Zhang L J, Yin X Q, et al. Materials & Design, 2019, 178, 1.
31 Barella S, Gruttadauria A, Mapelli C, et al. Engineering Failure Analysis, 2014, 36(1), 432.
32 Gong H J, Rafi K, Gu H F, et al. Additive Manufacturing, 2014, 14, 87.
33 Liu Q C, Elambasseril J, Sun S J, et al. Advanced Materials Research, 2014, 891-892, 1519.
34 Qiu C L, Wang Z, Aladawi A S, et al. Metallurgical and Materials Transactions A, 2019, 50(9), 4423.
35 Zhang H, Zhu H H, Qi T, et al. Materials Science and Engineering A, 2016, 656, 47.
36 Syed A, Ahmad B, Guo H, et al. Material Science Engineering A, 2019, 755, 246.
37 Kou S. Journal of Metals, 2003, 55(6), 37.
38 Cao L, Chen S Y, Wen M W, et al. Optics & Laser Technology, 2019, 111(8), 541 (in Chinese).
曹磊, 陈淑英, 温敏华, 等. 光学与激光技术, 2019, 111(8), 541.
39 Montazeri M, Yavari R, Rao P, et al. Journal of Manufacturing Science and Engineering, 2018, 140(11), 111001.
40 Olakanmi E O, Cochrane R F, Dalgarno K W. Progress in Materials Science, 2015, 74, 401.
41 Lukas L, Schimansky F P, Kühn U, et al. Journal of Materials Processing Technology, 2014, 214(9), 1852.
42 Li R D, Wei Q S, Liu J H, et al. Aeronautical Manufacturing Technology, 2012, 401(5), 26.
李瑞迪, 魏青松, 刘锦辉, 等. 航空制造技术, 2012, 401(5), 26.
43 Dadbakhsh S, Hao L, Sewell N, et al. Rapid Prototyping Journal, 2012, 18, 241.
44 Nie X, Zhang H, Zhu H, et al. Journal of Materials Processing Technology, 2018, 256, 69.
45 Moat R J, Pinkerton A J, Li L, et al. Materials Science and Engineering A, 2011, 528(6), 2288.
46 Zx A, Cc A, Hz A, et al. Materials & Design, 2020, 108846,193.
47 Zhao Y H, Zhao J B, Wang Z G. Vacuum, 2020, 292(2), 92(in Chinese).
赵宇辉, 赵吉宾, 王志国. 真空, 2020, 292(2), 92.
48 Nouri H, Guessasma S, et al. Journal of Materials Processing Technology, 2016, 234, 113.
49 Guo L Q, Jiang M, Wang D Z, et al. Computer Measurement & Control, 2018, 26(12), 23 (in Chinese).
郭良奇, 蒋明, 王邓志,等. 计算机测量与控制, 2018, 26(12), 23.
50 Wolff S J, Wu H, Parab N, et al. Scientific Reports, 2019, 9(1), 1.
51 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080.
52 Gunenthiram V, Peyre P, Schneider M, et al. Journal of Laser Applications, 2017, 29(2), 022303.
53 Matilainen V P, Piili H, Salminen A, et al. In: 15th Nordic Laser Materials Processing Conference. Beijing, China, 2015, pp. 377.
54 Honarvar F, Varvani-Farahani A. Ultrasonics, 2020, 108, 106227.
55 Lévesque D, Bescond C. Lord M, et al. In: 42nd Annual Review of Progress in Quantitative Non Destructive Evaluation. Minneapolis, Minnesota, 2016, pp.130003.
56 Donatella C, Nicola M. Procedia Structural Integrity, 2018, 8, 154.
57 Slotwinski J A. Journal of Research of the National' Institute of Standards and Technology, 2014, 119(4), 460.
58 Wu Z K, Zhang J, Wu S C, et al. Nondestructive Testing, 2020(7), 46 (in Chinese).
吴正凯, 张杰, 吴圣川,等. 无损检测, 2020(7), 46.
59 Chu L, Marussi S, Atwood R C, et al. Nature Communications, 2018, 9(1), 1355.
60 Hojjatzadeh S M H, Parab N D, Guo Q, et al. International Journal of Machine Tools and Manufacture, 2020, 153, 103555.
61 Hu Y N, Wu S C, Withers P J, et al. Materials & Design, 2020, 192, 108708.
62 Marinelli G, Martina F, Ganguly S, et al. International Journal of Refractory Metal & Hard Materials, 2019, 82, 329.
63 Wang D, Song C H, Yang Q Y, et al. Material, 2016, 100, 291.
64 Dinwiddie R B, Dehoff R R, Lloyd P D, et al. Spie Defense, Security, & Sensing, 2013, 8705, 156.
65 Garcia de la Yedra A, Pfleger M, Aramendi B, et al.Structural Control & Health Monitoring, 2019, 26(3), 1.
66 Zanini F, Hermanek P, Rathore, et al. In: Conference Record of the 2015 DIR. Manchester, 2015,pp. 22.
67 Liu S, Guo G P, Hao W F, et al. Journal of Experimental Mechanics, 2020, 169(5), 56(in Chinese).
刘帅, 郭广平, 郝文峰, 等. 实验力学, 2020, 169(5), 56.
68 Nillssin P, Appelgren A, Henrikson P, et al. In:Proceeding of 18th World Conference on Non-destructive Testing. Durban, 2012, pp. 2.
69 Hu T P, Gao L M, Yang H N. Aeronautical Manufacturing Technology, 2019, 62(8), 70(in Chinese).
胡婷萍, 高丽敏, 杨海楠. 航空制造技术, 2019, 62(8), 70.
70 Ehlers H, Pelkner M, Thewes R. In: Conference Record of the 2006 IEEE Sensors Journal. Montreal, 2020, pp. 11.
71 Guo Z Y, Xiong Z H. Journal of Hull University of Technology, 2020, 52(5), 49(in Chinese).
郭政亚, 熊振华. 哈尔滨工业大学学报, 2020, 52(5), 49.
72 Yang M C, Luo L, Song J J, et al. Journal of Chongqing University of Technology (Natural Science), 2022, 36(3), 112 (in Chinese).
杨美晨, 罗豪, 宋晶晶, 等. 重庆理工大学学报(自然科学), 2022, 36(3), 112.
[1] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[2] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[3] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[4] 王育华, 冯鹏, 丁松松, 马西麟, 曹君龙, 张泓喆, 李根, 郭海洁. 长余辉材料的设计及机理研究进展[J]. 材料导报, 2023, 37(3): 22110279-13.
[5] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[6] 杨杨, 凌宏杰, 刘金涛, 卢旭峰. 不同缺陷对装配式建筑钢筋灌浆套筒连接性能的影响[J]. 材料导报, 2023, 37(2): 21070022-7.
[7] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[8] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[9] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[10] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[11] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[12] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[13] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[14] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[15] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed